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…Our results clearly show an increase in the 

positron abundance at high energy that cannot be 

understood by standard models describing the 

secondary production of cosmic-rays.  

PAMELA 09 



The positron “anomaly” 

• A common argument: 

 

 

 

 

 

• Unsubstantiated assumptions: 

 

 

 

• The “anomaly” implies that (some of) these 
assumptions, which are not based on theory or 
observations, are not valid. 
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What is the e+ excess claim based on? 

• On assumptions not supported by data/theory 

* primary e- & p produced with the same spectrum, 

   and e- and e+ suffer same frad 

    e+/e-~Ssec~e-0.5 

Or 

* detailed assumptions RE CR propagation, 

   e.g. isotropic diffusion, D~ed, 

   within an e-independent box  

    frad ~e(d-1)/2 

 

• If PAMELA/AMS correct, these assumptions are wrong 



What we really know 

• For all secondary nuclei (e.g. C  B, Be; …):  
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Why does it work? 

• We have no basic principles model for CR propagation. 

• In general 

 

 

• If: The CR composition (nj/np) is independent of x, 

 The CR spectrum is independent of x  

 (or: E/Z the same for prim. & sec.),  

    Then:  
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What we really know: application to e+ 

• Positron secondaries: 

 

 

 

 

 

 

 

• A robust, model independent,  upper limit: 

 

• Estimate frad at 20GeV from 10Be (107yr): ~0.3 

    (CMB and starlight ~1eV/cm3, e+ lifetime ~107yr). 
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Measured from CR sec. 

Suppression due to synchrotron  

And inverse Compton energy loss 
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Some cautionary notes 

• tsec is not the residence time 

 

 

• If G(x,x’) is independent of x’ then 

 

 

• For particles with life time ,  

    fsec depends on model assumptions. It may, e.g., 

    attain the values /tres or V(tprop<)/VG under  

    different model assumptions.  
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PAMELA 09-10 

• For all secondaries (e.g. anti-p) 

 

 

 

 

 

• Radiative e+ losses- depend on 
propagation in Galaxy (poorly 
understood) 

 

 

* At ~20GeV:  frad~0.3~f10Be 

   e+ consistent with 2ndary origin 

* Above 20GeV: 

   If PAMELA correct 

    energy independent frad(e) 
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[Katz, Blum, Morag & EW 10] 



Primary e+ sources 

DM annihilation [Hooper et al. 09] Pulsars [Kashiyama et al. 11] 



? 

New primary sources  

Secondary origin  



PAMELA & AMS 2013 

• Anti-p consistent with prediction. 

 

• e+ flux saturates at the secondary 
upper bound.  

• The ABSOLUTE e+ flux matches 
the secondary bound. 

 

 

• In all primary e+ models (DM, 
pulsars…) there is no intrinsic scale 
that would explain why the 
ABSOLUTE observed flux lies near 
the data-driven secondary bound. 
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Conclusions 

• Anti-p and e+ measurements are in excellent 
agreement with secondary production model 
predictions. 

• The saturation of the ABSOLUTE e+ flux at the 
predicted secondary upper bound is a strong 
indication for a secondary origin, and is not 
expected in primary production models. 

• Upcoming measurements at yet higher energy will 
further test the validity of the model. 

• The main constraints that may be derived from the 
e+ measurements are on models of Galactic CR 
propagation. 

• In particular, the measurements constrain frad(e+).   



Implications of fsec(e+)~0.3- an example  

Under some model assumptions 

     fsec(e+)~ tcool/tres  

    which would imply  

 tres(E/Z=10GeV)>30Myr,  tres(E/Z=200GeV)<1Myr 

     and using Ssec 

 <nISM>(E/Z=10GeV)   < 0.2g/cc,  

 <nISM>(E/Z=200GeV)> 0.6g/cc, 

     which in turn implies that the CR halo scale height  

     decreases with E. 

 

 



A note on the IceCube detection 



[EW 1995; Bahcall & EW 03] 

[Katz & EW 09] 

• e2(dN/de)Observed=e2(dQ/de) teff.  (teff. : p + gCMB  N + p)   

   Assume: p, dQ/de~(1+z)me-a 

• >1019.3eV: consistent with  
     protons, e2(dQ/de) =0.5(+-0.2) x 1044 erg/Mpc3 yr + GZK 
 
 

UHE: Flux & Generation Spectrum 

cteff [Mpc] 

GZK (CMB)  

suppression 

log(e2dQ/de) [erg/Mpc2 yr] 



HE n: UHECR bound 

• p + g  N + p 

    p0  2g ;   p+  e+ + ne + nm + nm 

 Identify UHECR sources 

    Study BH accretion/acceleration physics 

  

• For all known sources,   gp<=1: 

 

 

 

 

 

 

• If X-G p’s: 

 

 Identify primaries, determine f(z) 
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Bound implications: I. AGN n models 

BBR05 

“Hidden” (n only) 

         sources 

Violating UHECR  

              bound 



Bound implications: n experiments 
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IceCube (preliminary) detection 

• 28 events, compared to 12 expected,  above 50TeV; ~4  

   (cutoff at 2PeV?) 

• 1/E2 spectrum, 4x10-8GeV/cm2s sr 

• Consistent with ne:nm:n=1:1:1 

• Consistent with isotropy 

[N. Whitehorn, IC collaboration, IPA 2013] 



IceCube (preliminary) detection 
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IceCube’s detection: Some implications 

• Unlikely Galactic: e2g~10-7(E0.1TeV)-0.7GeV/cm2s sr [Fermi] 

                                    ~10-9(E0.1PeV)-0.7GeV/cm2s sr 

 

• XG distribution of sources, 

    p, e2(dQ/de)PeV-EeV~ e2(dQ/de) >10EeV, gp(pp)>~1 

       Or:     

     e2(dQ/de)PeV-EeV>> e2(dQ/de) >10EeV, gp(pp)<<1  

    & Coincidence (over a wide energy range) 

The coincidence of 50TeV<E<2PeV n flux, spectrum (& flavor) 

with the WB bound is unlikely a chance coincidence. 



The cosmic ray generation spectrum 

XG CRs 

XG n’s 
Galactic CRs 

(+ CRs~SFR) 



n’s from Star Bursts 

• Starburst galaxies 
– {Star formation rate, density, B} ~ 103x Milky way. 

    Most stars formed in z>1.5 star bursts. 

 

• CR e’s lose all energy to synchrotron radiation,  

•  e<10PeV p’s likely lose all energy to p production,  

                 at higher e may escape. 
       

      e2(dQ/de) ~1044 erg/Mpc3 yr     n ~WB  

[Quataert et al.  06] 

[Loeb & EW 06] 



[Loeb & EW 06] 

Starburst galaxies: predicted n emission 



• The identity of the CR source(s) is still debated. 

• Open Q’s RE candidate source(s) physics [accreting BHs]. 

 

•  e2(dQ/de) ~ 1044erg/Mpc3yr at all energies (10—1010 GeV). 

     Suggests:  CRs of all E produced in galaxies @ a rate ~ SFR, 

            by transients releasing ~1050.5+-1.5erg. 

 

• IceCube’s detection: new era in n astro. 

     Next: spectrum, flavor, >1PeV, GZK, 

               EM association- Bright transients are the prime targets. 

• Coordinated wide field EM transient monitoring- crucial. 

• EM Association may resolve outstanding puzzles:  

     - Identify CR (UHE & G-CR) sources, 

     - Resolve open “cosmic-accelerator” physics Q’s 

         (related to BH-jet systems, particle acc., rad. mechanisms), 

     - Constrain n physics, LI, WEP. 

 

IceCube’s detection: Some implications 


