

Stefano Profumo

University of California, Santa Cruz Santa Cruz Institute for Particle Physics

Astrophysical Probes of Dark Matter

TeV Particle Astrophysics 2013
University of California, Irvine, August 29, 2013

3 tantalizing results might start delivering fundamental physics from the sky

>>1000 CITATIONS!

Adriani et al, Nature 458 (2009) 607, arXiv 0810.4995
*I.V. Moskalenko and A.W. Strong Astrophys. J. 493, 694-707 (1998).

Low-Energy: correct for (charge-dependent) solar modulation

22 years full cycle (max every 11 years, with polarity reversal) previous data: solar polarity favored positively charged particles, opposite for PAMELA

Cosmic Ray Secondary-to-Primary ratio

image credit: Philip Mertsch

is the positron excess real?

Experimentalists get ignored if they are right, and hugely cited if they are wrong.

Theorists get ignored if they are wrong, but a Nobel Prize if they are right.*

Superluminal Neutrinos @ OPERA: >200 theory papers

How does Fermi tells e⁺ apart from e⁻?

Fermi-LAT Collaboration, 1109.0521

Geomagnetic field + solid Earth shadow = directions from which only electrons or only positrons are allowed

For particular directions, electrons or positrons are completely forbidden

Pure e⁺ region looking West and pure e⁻ region looking East

Regions vary with particle energy and spacecraft position

Slide concept: Justin Vandenbroucke

April 3, 2013

AMS-02 first results confirm positron excess with very high statistics (x100)

...better take seriously the excess of HE positrons

Can we determine the source/origin?

Note: this is all **consistent** with Eli's upper limit on secondaries

A marketing problem:

if data are consistent with a general, model-independent upper limit, we don't necessarily understand/predict the physical origin of the HE positrons!

key piece of the puzzle: the Denominator (e⁺ + e⁻)

Galactic Cosmic Ray
acceleration should
produce a power-law
e+e- injection spectrum
with a high-energy cutoff

Fermi/HESS data compatible with an additional high-energy source

Solution: postulate additional source of (high-energy) electrons and positrons:

What is the nature of this **new** powerful electron-positron **source**??

Exciting! It could be New Physics: Dark Matter Annihilation!

Image Credit: NASA/GLAST collaboration

Exciting!

It could be New Physics: Dark Matter Annihilation!

A. Tylka, Phys. Rev. Lett.63, 840-843 (1989)

Exciting! It could be New Physics: Dark Matter Annihilation!

...or it could **not**...

Pulsar Magnetosphere

Rotation-powered Neutron Stars radiate energy by producing e+e- pairs, injected in ISM when out of Pulsar Wind Nebula

Harding, A. K. & Ramaty, R. The pulsar contribution to galactic cosmic-ray positrons.

Proc. 20th ICRC, Moscow 2, 92-95 (1987).

>1000 papers advocate Dark Matter ...despite some obvious and significant issues:

- (i) Need very large annihilation rates $(<\sigma v> \sim 10^2-10^3 \times 10^{-26} \text{ cm}^3/\text{s})$
- (ii) Need rather large masses (~TeV)
- (iii) Need special annihilation or decay modes (suppress **antiprotons** + have a hard spectrum) e.g.: $\mu^+\mu^-$, or 4μ (even **worse** post-AMS: $\pi\pi$)

...an interesting riddle to test a theorist's creativity!

Redman's Theorem

"Any competent theoretician can fit any given theory to any given set of facts" (*)

(*) Quoted in M. Longair's

"High Energy Astrophysics", sec 2.5.1

"The psychology of astronomers
and astrophysicists"

Roderick O. Redman (b. 1905, d. 1975) Professor of Astronomy at Cambridge University

"Dissecting Pamela with Occam's Razor: existing, well-known Pulsars naturally account for the "anomalous" Cosmic-Ray Electron and Positron Data"*

...Pulsars Post AMS

- Distance and Age from observation (set the cutoff)
- Normalization: 1-10% spin-down luminosity
- Injection Spectrum: ~ E⁻² (Fermi 1st order)

can we discriminate between dark matter and pulsars?

Nearby Pulsar ---->

Anisotropy in the arrival direction

(sufficient, not necessary)

Dark Matter

Diffuse secondary component

Dark Matter --> Secondary component

Dark Matter: a "Universal" Phenomenology

Large annihilation rates

Large masses

Hard charged leptons

Inverse Compton

Gamma-Ray Searches from Galaxy Clusters

Jeltema, Profumo & Fermi-LAT Collaboration, JCAP 2010, arXiv: 1001.4531

Gamma-Ray Searches from Galaxy Clusters

Gamma-Ray Searches from Galaxy Clusters

extragalactic gamma-ray background

Nearby Pulsar ---->

Anisotropy in the arrival direction

(sufficient, not necessary)

Fermi-LAT Collaboration, PRD, 1008.5119 AMS-02 Collaboration, PRL, 110, 141102

No Anisotropy observed in the Fermi e⁺e⁻ data, or in the AMS data

Pulsar interpretation entirely consistent with all data!

Way forward: Cherenkov Telescopes sensitive to predicted anisotropies at VHE!

Linden and Profumo, Astroph. J (2013) 1304.1791

- we are closing in on the dark matter interpretation
- AMS-02 positron fraction data "favor" PSR's over dark matter

Conclusive argument against dark matter: anisotropy (ACTs!)

Dark Matter annihilation in the Galactic Center?

the problem with the Galactic Center: "under-fitting" versus "over-fitting"

The **Galactic Center** Region: a Holy Grail or a Hornet's Nest?

- Largest (known) Galactic
 Dark Matter Density
- There appears to be an excess of soft gamma rays

- Largest Cosmic Ray Density
- Largest Gas and Radiation Densities
- Largest concentration of Galactic Gamma Ray sources

Kassim et al, 1999

Springel et al, 2009

Background

Oct. 2009

Goodenough, Hooper

Exponential angular fall-off
Power-law spectrum

28 GeV, bb quark

Background

Dark Matter particle

Oct. 2009

Goodenough, Hooper

Exponential angular fall-off
Power-law spectrum

28 GeV, bb quark

Oct. 2010

Hooper, Goodenough

r ^{-1.55} fall-off

Spectrum: extracted from >2deg region

8 GeV, $\tau^+\tau^-$

the danger of background "under-fitting":

may end up with a "Goodenough Hooperon"

Oct. 2009

Goodenough, Hoope

Fig. 10 GeV — Sum — Dark Matter 90% leptons, 10% bb — Point Source — Galactic Ridge (π⁰ → γγ)

Eq. (GeV)

Matter particle

GeV, bb quark

Oct. 2010

from >2 dea region

8 GeV, $\tau^+\tau^-$

Hooper, Goo

Several recent studies confirmed the 2011 Linden-Hooper excess (Abazijian and Kaplinghat, 2012; Hooper and Slatyer 2013)

GeV,

or bb,

Oct. 2

plus point-source

or ganaric

Very intriguing mass range (see CDMS+CoGeNT ~ 10 GeV mass WIMPs)

"Over-fitting"

"Over-fitting"

We know little about cosmic rays in the GC

CR power: ~10⁴¹ erg/s; Sag A* Eddington lum.: >10⁴⁴ erg/s

While very quiet now, Sag A* likely accelerates and has accelerated protons: study the gamma-ray properties

Linden, Lovegrove and SP, 1203.3539 and in prep.

Fig. 2. Composite image showing (in green) the 3.6 cm radio continuum emission from warm ionized gas in the Sgr A West H II region, with the three-arm Minispiral emerging very clearly, and (in red) the 3.4 mm HCN $J=1\rightarrow0$ line emission from the surrounding Circumnuclear Ring (CNR). The radio continuum data are from Yusef-Zadeh et al. (2008) and the HCN data from Wright et al. (2001). Figure credit: Farhad Yusef-Zadeh.

If source is hadronic,

GALPROP likely is the wrong tool

Need detailed modeling of gas distribution Our approach: Monte Carlo

K. Ferrere, 2012; Linden and Profumo, 2012

Linden, Lovegrove and SP, 1203.3539, ApJ 753 (2012) 41

transition between diffusively trapped behavior and rectilinear propagation

key diagnostics: circum-nuclear ring!

Chernyakova et al, 2011; Linden, Lovegrove and SP, 1203.3539, ApJ 753 (2012) 41

Galactic Center: the way forward??

- seek a "golden mean" between overand under-fitting
- detailed cosmic ray and target density models
- data-driven backgrounds

"Troubling and Inconclusive"

Steve Ritz Fermi-LAT Deputy PI

If confirmed, huge impact on particle physics!

DM particle at rest, so $\chi\chi \rightarrow \gamma\gamma$ implies $\mathbf{E}_{\gamma} = \mathbf{m}_{\chi}!$

m_χ sets the **missing energy** scale for **collider** studies

...and the target mass for direct detection experiments!

Weniger (1204.2797)

Key novelty: optimized Regions of Interest

Signal: $\sim (\rho_{DM})^2$

Noise: $(1-20 \text{ GeV sky})^{1/2}$

(almost) 3σ effect, E_{γ} =130 GeV look-elsewhere effect accounted for

Two remarks*

(1) ROI's overlap with Fermi bubbles: photons from bubbles are important background

^{*} Profumo and Linden, "Gamma-Ray Line in the Fermi Data: is it a Bubble?", JCAP 2012

Two remarks*

(1) ROI's overlap with Fermi bubbles: photons from bubbles are important background

(2) broken power-law could be mistaken for a line - Fermi bubbles have broken power-law spectrum

^{*} Profumo and Linden, "Gamma-Ray Line in the Fermi Data: is it a Bubble?", JCAP 2012

could it be an instrumental effect?

One culprit could be **energy reconstruction**: E>130 GeV mis-read as E=130 GeV event!

Instr. effects under investigation by Fermi Collaboration,
 including troubling Earth's Limb feature!
[Pass 8: currently being tested internally/public in ~1yr]

If not instrumental, potentially very interesting wait for more statistics (so far ~50 photons)!

can we hope for more statistics with other existing/near future telescopes?

Fermi: $A_{eff}xT_{obs} = (1 \text{ m}^2) \times 4\pi x 10^7 \times (1/6) \text{ s} \sim 2x 10^7 \text{ m}^2 \text{ s}$

e.g., HESS: promising, but A_{eff} rapidly **declining** in energy region of interest

Figure credit: Benow, for HESS collaboration

CTA: superior energy resolution, angular resolution, energy threshold and effective area

Cherenkov Telescopes will be key for further studies of the line

Astrophysical backgrounds? Always keep Occam in mind!

Klein-Nishina regime: almost all energy transferred from e to $\gamma \rightarrow E_e^{\sim} 130 \text{ GeV}$

Need~ mono-chromatic electrons and target photons with $\omega_0 >> m_e^2/E_e \sim 2 \text{ eV}$

Both OK with electron pulsar wind

This is **not** a **POST-diction**!

Energetics works out fine! 130 GeV line luminosity ~ 3x10³⁵ erg/s

Crab luminosity in shock-acc. e⁺e⁻ ~ 3x10³⁸ erg/s [spin-down luminosity~ 5x10³⁸ erg/s] efficiency to produce gamma rays??

Many open questions...

- how many point sources are needed?
- if more than one astrophysical source is needed, do we expect 130 GeV to be a special universal value?

Applied a clustering algorithm (DBSCAN) and demonstrated one needs at least 5 pulsars (@90%CL)

Astrophysical backgrounds are unlikely, given current data!

Carlson, Linden, Profumo and Weniger, JCAP, 1304.5524 (2013)

- ➤ 130 GeV line "troubling and inconclusive", yet exciting!
- low statistics, perhaps instrumental, but unlikely "astrophysical"
- look forward to: Fermi's Pass8 and ACT

A (dark matter) model that does everything?

Positron excess, Galactic Center excess, "The Line"

Is this all "chasing ambulances"?

"Ambulance chasing OK, as long as the patient is not dead"