

IceCube

Neutrino Telescope & 3D Cosmic Ray Detector

IceTop: Calibration device for IceCube

measure cosmic ray spectrum and composition as input to neutrino calculations

Air Shower Reconstruction

On the surface: Shower core: x,y,z Shower direction: ϑ,φ

On the surface: IceTop shower size S_{125} and β

In deep ice: Muon bundle energy loss dE/dX (GeV/m) and stochastic behavior

IceCube-79 / IceTop-73 Analysis

June 2010 – May 2011

Surface Only: IT73

327 days of live time 12M events after quality cuts

Effective area=Geometric area=5.7710⁵ m² above ~ 2.5 PeV

• Assumes composition to derive energy spectrum

Default model: H4a from

T.K. Gaisser, Astropart. Phys. 35 (2012) 801-806

Several different models tried and reported as composition related systematics

Surface and In Ice: IC79/IT73

310 days of live time 1.56M events after quality cuts

Effective area= $1.3610^5 \, \text{m}^2$ above ~ $2.5 \, \text{PeV}$

- Multivariate Neural Network Analysis
- Measures Composition
- Measures composition independent energy spectrum

IceCube-79 / IceTop-73 Analysis

June 2010 – May 2011

Surface Only: IT73

Surface and In Ice: IC79/IT73

Performance

Core resolution: 6-13 m

Angular resolution: $0.2^{\circ} - 0.8^{\circ}$

Core resolution: 6-10 m

Angular resolution: $0.4^{\circ} - 1.0^{\circ}$

S_{125} - Energy Conversion

CORSIKA Sibyll 2.1 – FLUKA Primaries: H, He, O, Fe South Pole July atmosphere. E⁻¹ spectrum: 100 TeV - 3 EeV Zenith: 0-40° 42000 showers per primary

Fit performed in four cosΘ bins between 1.0 and 0.8

$$\log_{10}(E) = p_1 \log_{10}(S125) + p_0$$

S_{125} - Energy Conversion

	3 PeV	30 PeV
	0100	00101
Energy scale (VEM calibration)	±4%	±5%
Snow Correction	±5%	±6%
Interaction models QGSJet-II-03 and SYBILL 2.1	-2%	-4%
Composition	±7%	±7%
Ground pressure (690 hPa/670 hPa)	±2%	±0.5%

IceCube-79 / IceTop-73 Coincidence Analysis

- 5-6-4-2 Neural Network to map 5 observables to Primary Energy and Mass
- Energy spectrum directly from NN output
- Composition from fitting data in E_{reco} bins to template histograms (H,He,0,Fe) from NN mass output

e.g. Template histograms for 4 mass groups in one energy bin for a fake dataset scrambled from MC

IceCube-79 / IceTop-73 Analysis

June 2010 – May 2011

Surface Only: IT73

Surface and In Ice: IC79/IT73

Energy Resolution

use variable bin sizes: $\Delta \log_{10}(E) = 0.05$ for 6.5< $\log_{10}(E/GeV) < 8$ $\Delta \log_{10}(E) = 0.1$ for 6.2< $\log_{10}(E/GeV) < 6.5$ and 8 < $\log_{10}(E/GeV) < 9$

Energy Spectrum

- IceTop: high altitute, near Xmax dominated by EM
- KASCADE-Grande: sea level EM + GeV muons

sea level is better probe to see interaction model differences

Good agreement between experiments

Energy spectrum 1.58 PeV to 1.26 EeV

Large scale structure in spectrum

- Spectrum does not follow a simple power law above the knee up to 1 EeV.
- Spectral hardening at 18±2 PeV (124800 events expected, 139880 observed)
- Spectrum steepens at 130±30 PeV (4213 events expected, 3673 observed)

accepted for publication in Phys. Rev. D

IceCube-79 / IceTop-73 Coincidence Analysis

Systematics under study – will finalize soon

gray band is ±7 composition systematics of IceTop-73 analysis

Excellent agreement between two independent analyses

clear trend towards heavier composition up to ~100 PeV

Large Scale Anisotropy with IceCube / IceTop

IceTop CR showers > 100 TeV

IceCube, ApJ 746, 33 (2012)
IceCube, ApJ 765, 55 (2013)

topology changes between 20 - 400 TeV

anisotropy is not dipole

amplitude increases with energy

PeV Gamma Astronomy with IceCube / IceTop

Look for muon poor showers:

- Select IceTop showers with cores going through IceCube
- No activity in IceCube around the shower axis
- → threshold ~ 1 PeV
- → event topology restricts field of view to declination range -60° to -90°

268 candidate events found in IceCube-40/IceTop-40 detector configuration (2008/2009) Seach for correlation with the Galactic plane and scan for point sources performed *IceCube*, *Phys. Rev. D87*, 062002 (2013)

- 90% C.L. sensitivity to a diffuse flux from the Galactic plane.
- 5yr sensitivity of IceCube-86 is compatible to existing limits from different regions of the plane.

- 5yr sensitivity of IceCube-86 to point sources near the Galactic plane.

 Assume sources do cut off between TeV and PeV
- Several hard gamma-ray sources are in FOV
- IceCube will study these systems

Summary

- High resolution measurement of cosmic ray all particle spectrum and composition in 1.58 PeV – 1.26 PeV region with one year of data from 2010-2011
- Good agreement between recent measurements of other experiments
- Overlap with UHE measurements around EeV
- Spectrum shows large structures hinting to a different mechanism above the knee
- Composition gets heavier up to at least 100 PeV
- Anisotropy changes topology between 20 400 TeV, its amplitude increases between 400 TeV and 2 PeV
- → CR modelers of acceleration/propagation need to reproduce these features
- Interesting prospect to search for PeV gamma-rays in correlation with PeV neutrinos