The PAMELA experiment: Seven Years of Cosmic Rays Investigation Mirko Boezio INFN Trieste, Italy

On behalf of the PAMELA collaboration

TeVPA 2013, Irvine August 26th 2013

PAMELA Collaboration

- Search for dark matter annihilation
- Search for antihelium (primordial antimatter)
- Search for new Matter in the Universe (Strangelets?)
- Study of cosmic-ray propagation (light nuclei and isotopes)
- Study of electron spectrum (local sources?)
- Study solar physics and solar modulation
- Study terrestrial magnetosphere

PAMELA apparatus

INFN Istituto Nazionale di Fisica Nucleare

PAMELA detectors

Main requirements \rightarrow high-sensitivity antiparticle identification and precise momentum measure

Mass: 470 kg

Resurs-DK1 satellite + orbit

- Resurs-DK1: multi-spectral imaging of earth's surface
- PAMELA mounted inside a pressurized container
- Lifetime >3 years (assisted, first time February 2009), extended till <u>end of satellite operations</u>
- Data transmitted to NTsOMZ, Moscow via high-speed radio downlink. ~16 GB per day
- Quasi-polar and elliptical orbit (70.0°, 350 km - 600 km) – from 2010 circular orbit (70.0°, 600 km)
- Traverses the South Atlantic Anomaly
- Crosses the outer (electron) Van Allen belt at south pole

Cosmic Ray Spectra

Cosmic-Ray Acceleration and Propagation in the Galaxy

Pillars of the SNR paradigm

Particle escape

CRs IN SNR \rightarrow DIFFUSIVE SHOCK ACCELERATION, Q(E)~E^{γ}

PROPAGATION OF CRs IN THE GALAXY with D(E)~ $E^{\delta} \rightarrow$ n(E)~ $E^{-\gamma-\delta}$

P. Blasi, TeVPA 2011, Stockholm 2011

Proton and Helium Nuclei Spectra

Proton and Helium Nuclei Spectra

H & He absolute fluxes @ high energy

- Deviations from single power law (SPL):
- Spectra gradually soften in the range 30÷230GV
- Spectral hardening @ R~235GV Δγ~0.2÷0.3
- SPL is rejected at 98% CL Origin of the structures?
- At the sources: multipopulations, non-linear DSA
- Propagation effects

Spectrometer Systematic Uncertainties

Check of systematics

Fluxes evaluated by varying the selection conditions:

- Flux vs time
- Flux vs polar/equatorial
- Flux vs reduced acceptance
- Flux vs different tracking conditions (⇒ different response matrix)

Integral proton flux (>50GV)

PAMELA & BESS-PolarII proton spectrum

BESS / PAM

H/He ratio vs R

Instrumental p.o.v.

 Systematic uncertainties partly cancel out

Theoretical p.o.v.

- Solar modulation negligible
- → information about IS spectra down to GV region
- Propagation effects small above ~100GV
 → information about source spectra

H/He ratio vs R

Instrumental p.o.v.

 Systematic uncertainties partly cancel out

Theoretical p.o.v.

- Solar modulation negligible
- → information about IS spectra down to GV region
- Propagation effects small above ~100GV
 → information about source spectra

Light Nuclei and Isotopes

• Tuning of cosmic-ray propagation models with measurements of secondary/primary flux ratio

 ²H/¹H and ³He/⁴He are complimentary to B/C measurements in constraining propagation models (Coste et al., A&A 539 (2012) A88)

Boron and Carbon

Hydrogen Isotopes

¹H and ²H fluxes

²H/¹H

O. Adriani et al., ApJ 770, (2013) 2

Helium Isotopes

⁴He and ³He fluxes

O. Adriani et al., ApJ 770, (2013) 2

Electrons can tell us about local GCR sources

- High energy electrons have a high energy loss rate $\propto E^2$
 - \circ Lifetime of ~10⁵ years for >1 TeV electrons
- Transport of GCR through interstellar space is a diffusive process
 - Implies that source of high energy electrons are < 1 kpc away</p>

PAMELA Electron (e⁻) Spectrum

Mirko Boezio, TeVPA2013, Irvine, 2013/08/26

Electron Spectrum and Positron Fraction

Astrophysical Explanation: Pulsars

- Mechanism: the spinning B of the pulsar strips e⁻ that accelerated in the outer magnetosphere emit γ that produce e[±]. But pairs are trapped in the cloud. After (4-5)x10⁴ years pulsars leave remanent and pairs are liberated (e.g. P. Blasi & E. Amato, arXiv:1007.4745).
- Young (T < 10⁵ years) and nearby (< 1kpc)
- If not: too much diffusion, low energy, too low flux.
- Not a new idea, e.g.: Harding & Ramaty, ICRC 2 (1987), Boulares, ApJ 342 (1989), Atoyan et al. PRD 52 (1995)

Pulsar Explanation

Antiparticles with PAMELA

Astrophysics and Cosmology compelling Issues

- Origin and propagation of the cosmic radiation
- Nature of the Dark Matter that pervades the Universe
- Apparent absence of cosmological Antimatter

Antiproton to proton flux ratio

Using all data till 2010 and multivariate classification algorithms 20-50% increase in respect to published analysis

Antiproton energy spectrum

Cosmic-Ray Antiprotons and DM limits

D. G. Cerdeno, T. Delahaye & J. Lavalle, Nucl. Phys. B 854 (2012) 738 Antiproton flux predictions for a 12 GeV WIMP annihilating into different mass combinations of an intermediate two-boson state which further decays into quarks.

See also:

- M. Asano, T. Bringmann & C. Weniger, Phys. Lett. B 709 (2012) 128.
- M. Garny, A. Ibarra & S. Vogl, JCAP 1204 (2012) 033
- R. Kappl & M. W. Winkler, PRD 85 (2012) 123522

Positrons with PAMELA

INFN (Istituto N. di Fisica 1

Positron to Electron Fraction

Positron fraction $\phi(e^+)$ / ($\phi(e^+) + \phi(e^-)$ 0.24 0.22 0.2 Using all data till 2010 **Secondary production** Moskalenko & Strong 98 and multivariate 0.18 classification 0.16 algorithms about factor 2-3 increase in 0.14 respect to published 0.12 analysis 0.1 0.08 0.06 0.04 0.02 10² 10 Energy (GeV)

O. Adriani et al., PRL 111 (2013) 081102; arXiv:1308.0133

Positron to Electron Fraction

Positron Energy Spectrum

A Challenging Puzzle for CR Physics

Implications

A rising positron fraction requires:

- 1. An additional component of positrons with spectrum flatter than CR primary electrons
- 2. A diffusion coefficient with a weird energy dependence (BUT this should reflect in the CR spectrum as well)
- 3. Subtleties of Propagation

Courtesy by P. Blasi

A Challenging Puzzle for CR Physics

<u>Cosmic Rays in the</u> <u>Heliosphere</u>

INFN Istituto Nazionale di Fisica Nucleare

Positron to Electron Fraction

Adriani et al, Astropart. Phys. 34 (2010) 1 arXiv:1001.3522 [astro-ph.HE]

Time Dependance of the Proton Flux

Galactic e⁻ and e⁺ modulation

Positron fraction increases going towards solar minimum

Positron fraction increases from 2006 to 2009.

PaMeL

Charge-Sign Dependent Solar Modulation

Summary of PAMELA results

• PAMELA has been in orbit and studying cosmic rays for ~7 years. >10⁹ triggers registered and >30 TB of data down-linked.

•Hydrogen and helium nuclei spectra measured up to 1.2 TV. Theses observations challenge the current paradigm of cosmic ray acceleration and propagation

Antiproton-to-proton flux ratio and antiproton energy spectrum (~100 MeV - ~200 GeV) show no <u>significant</u> deviations from secondary production expectations.
High energy (>10 GeV) positron fraction and energy spectrum increases significantly (and unexpectedly!) with energy. Primary source?

• Continuous study of solar modulation effects.

