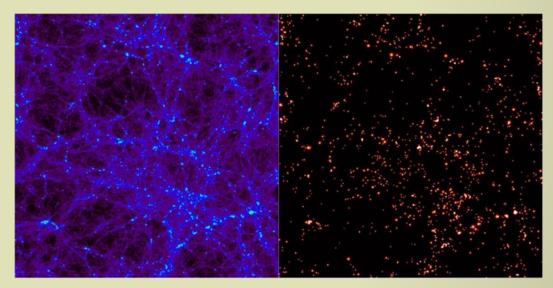
Gamma-Ray Probes of Dark Matter Halo Substructure

Sheldon Campbell TeVPA 2013 August 28, 2013

Outline—Dark Matter Substructure

- 1. Probing dark matter halo substructures? Indirect Detection!
- 2. Intensity Spectrum Probes

3. Anisotropy Spectrum Probes


Using results from several works in preparation with: Bhaskar Dutta, Carsten Rott, John Beacom, Shunsaku Horiuchi, Kohta Murase, Basudep Dasgupta, Ranjan Laha, Kenny Ng.

Dark Matter Structure: Halos and Substructure

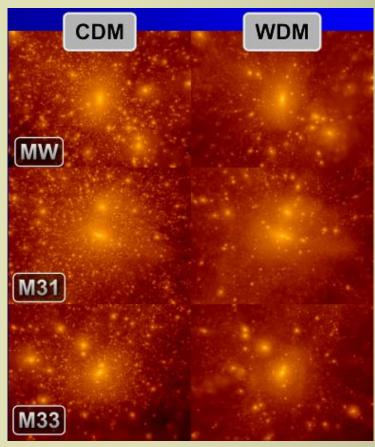
Accurate description of densest regions to explain indirect detection signals.

Image Credit: Via Lactea Project

Distribution from simulation.

Associated disjoint, spherical halo distribution.

Image Credit: VIRGO Consortium/Alexandre Amblard/ESA


Beyond CDM?

- CDM + Baryons
- Multicomponent Dark Matter
- Warm Dark Matter
- Dark Matter Self-interactions

•

Currently a hot topic at dwarf scales.

Big consequences for small scale structure.

http://www.clues-project.org/images/darkmatter.html Copyright S. Gottlober, G. Yepes, A. Klypin, A. Khalatyan

Can observations constrain small scale structure?

Radiation?

- Star formation is inefficient in halos smaller than dwarf scales.
- $_{\odot}$ Small substructures < $10^8\,M_{\odot}$ are too dark to observe.

Gravitational Lensing?

- Flux ratio anomalies of 4-image lenses.
- \circ Seeing substructure down to $10^5 10^6 M_{\odot}$?

Astrometric Microlensing?

 \circ May see substructures down to $10^4\,M_\odot$ if they are very concentrated.

Perhaps indirect detection is the only "direct" way to probe very small scale structure...

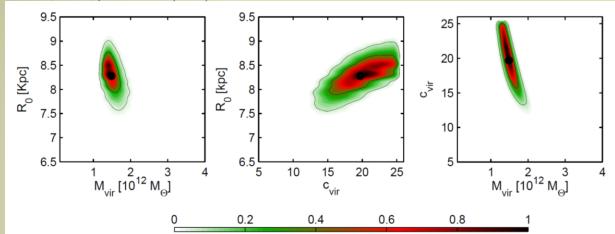
Small-Scale Structures in Indirect Detection

- Extragalactic Diffuse Gamma Rays
- Nearby Galaxy Cluster Halos
- Galactic Halo Substructures

Scenarios:

- 1. Substructures are responsible for observation of dark matter annihilation.
- 2. Dark matter annihilation is seen in a region with negligible substructure (such as galactic center), but not in other regions.

Example 1: Substructure Impacting Discovery

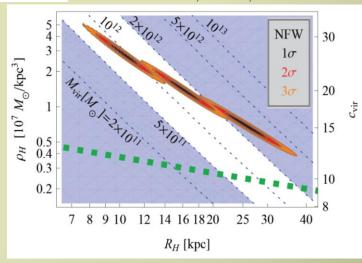

Could substructure cause the Fornax Cluster to be brighter in annihilations than the galactic center?

Consider three recently published models of substructure:

- 1) Gao et al. (2012), **G12**:
 - Based on the Phoenix and Aquarius simulations.
 - A fitting formula for the angular surface intensity of substructure.
- 2) Kamionkowski, Koushiappas, Kuhlen (2010), K10:
 - Density Probability Distribution Function profile.
 - Fit to the Via Lactea II simulation.
 - Suggested scaling for galaxy clusters by Sánchez-Conde et al. (2011).
- 3) Pinzke, Pfrommer, Bergstrom (2011), P11:
 - Used the Aquarius simulations and scaled up to cluster sized halos.
 - Found a double-power law fit the primary substructure intensity profile.
 - Scaled down to $M_{\rm min}=10^{-6}~M_{\odot}$. I also try $M_{min}=10^{-12}~M_{\odot}$.

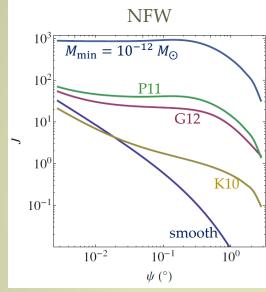
Galactic Halo Constraints from Kinematical Tracers

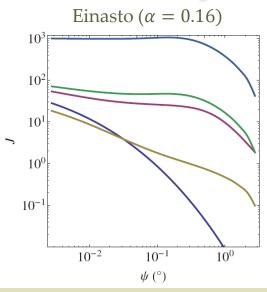
Catena, Ullio, JCAP 1008 (2010) 004

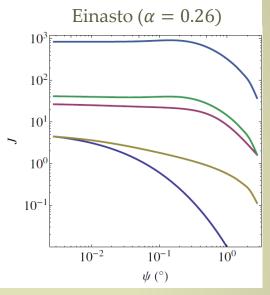


NFW profile

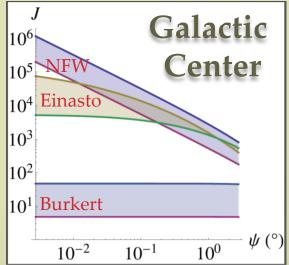
$$\rho(r) = \frac{\rho_S}{\frac{r}{r_S} \left(1 + \frac{r}{r_S}\right)^2}$$


Nesti, Salucci, arXiv:1304.5127


- The solar system velocity strongly constrains the value of $\rho_s r_s^2$.
- The J-factor goes roughly as $\rho_s^2 r_s$.

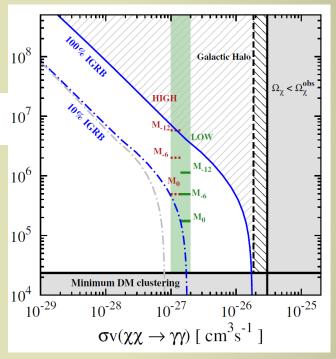


Potential Signal Strengths

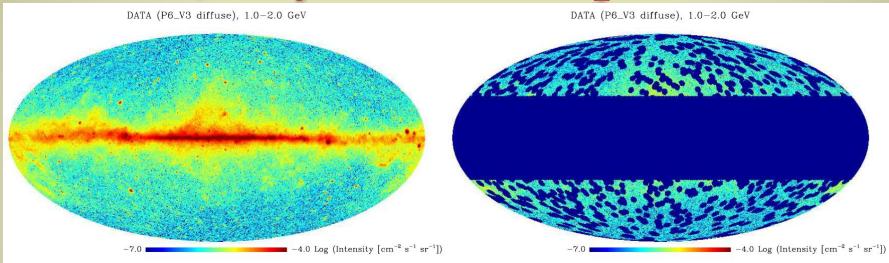


A cored galactic halo profile may be dimmer than a Fornax cluster with a lot of substructure.

 ψ is the observation angle from the center of the halo.


Example 2: Discovery Constraining Substructure

What if annihilations are observed in the galactic center, but not elsewhere?


$$\frac{\langle \rho^2(z=0,M_{\min})\rangle}{\bar{\rho}^2}$$

Kenny Ng (previous talk) just gave us examples of this.

Cross sections probed in galactic center would constrain substructure in extragalactic and galactic halos.

Complementary Approach γ-ray Anisotropies

Angular Power Spectrum C_ℓ

$$I(E, \mathbf{n}) - \langle I(E) \rangle = \sum_{\ell, m} a_{\ell m}(E) Y_m^{\ell}(\mathbf{n}) \qquad C_{\ell}(E) = \frac{1}{2\ell + 1} \sum_{m} |a_{\ell m}(E)|^2$$

Fluctuation Angular Power Spectrum $\widetilde{C_\ell}$

$$I(E, \mathbf{n}) - \langle I(E) \rangle = \langle I(E) \rangle \sum_{\ell m} \tilde{\alpha}_{\ell m}(E) Y_m^{\ell}(\mathbf{n}) \qquad \widetilde{C_{\ell}}(E) = \frac{1}{2\ell + 1} \sum_{m} |\tilde{\alpha}_{\ell m}(E)|^2$$

A few important details...

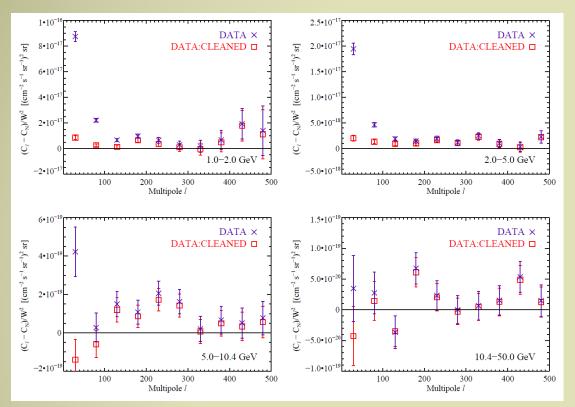
Anisotropies of a purely isotropic distribution is just shot noise.

$$\widetilde{C_N} \simeq \frac{4\pi f_{\rm sky}}{N_{\gamma}}$$

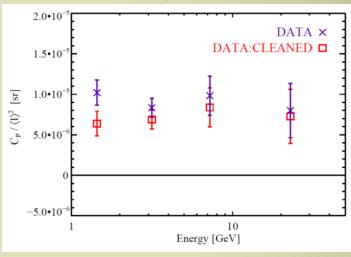
• Angular power from multiple γ -ray emitting populations.

$$C = C_1 + C_2 + \cdots$$

$$\widetilde{C} = \left(\frac{I_1}{I}\right)^2 \widetilde{C_1} + \left(\frac{I_2}{I}\right)^2 \widetilde{C_2} + \cdots$$

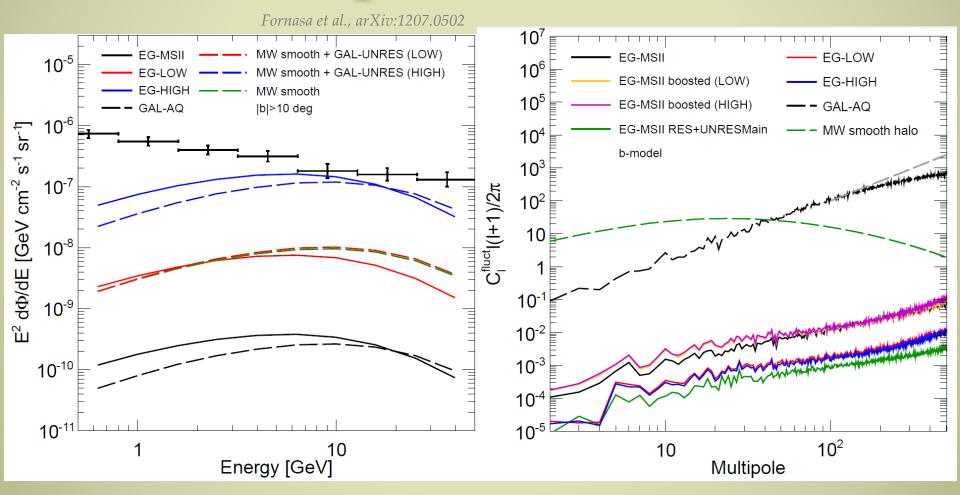

• Statistical Error for weighted average over $\ell_1 \le \ell \le \ell_2$.

$$\sigma_{\tilde{C}} \simeq \begin{cases} \frac{8\pi\sqrt{f_{\rm sky}}\sigma_b e^{\sigma_b^2\ell_1^2}}{N_\gamma}, N_\gamma \text{ small} \\ \\ \widetilde{C} \sqrt{\frac{2}{f_{\rm sky}(\ell_2^2 - \ell_1^2)}}, N_\gamma \text{ large} \end{cases}$$

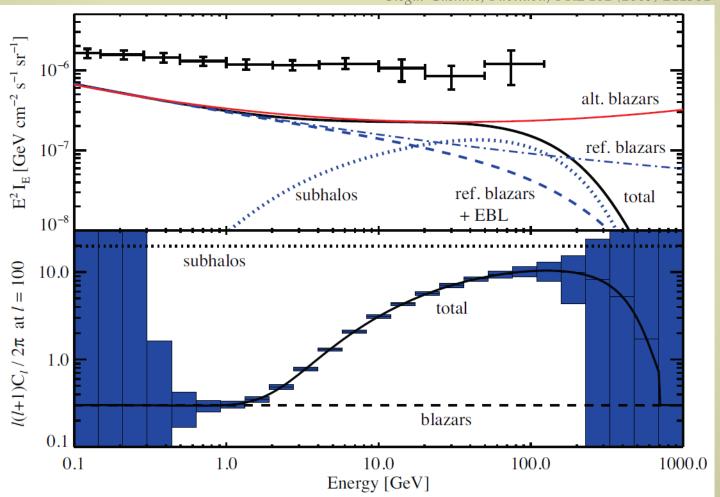

 $f_{\text{sky}} = \text{fraction of}$ sky unmasked.

 σ_b = angular beam width.

Fermi-LAT Measurements


Fermi-LAT Collaboration, PRD85 (2012) 083007

 Weighted average in each energy bin shows significant power consistent with no energy modulation.


- 4 energy bins
- Cleaned data = galactic foreground subtraction.
- Foreground contamination minimal for $\ell \geq 155$.

Fluctuation Angular Power Spectra from DM

Anisotropy with Continuous Annihilation Spectra

Siegal-Gaskins, Pavlidou, PRL 102 (2009) 241301

Sensitivity to a Spectral Line

Intensity

Absence of a signal constrains
$$\frac{\Phi_{\mathrm{DM}}}{\Phi} < \frac{1}{\sigma_N} = \frac{1}{\sqrt{N_\gamma}}$$
.

Angular Power

Absence of power constrains
$$\frac{\Phi_{\rm sub}}{\Phi} < \sqrt{\frac{\sigma_{\widetilde C}}{\tilde C_{\rm sub}}}$$
 which also initially goes like $N_{\gamma}^{-1/2}$.

This is an independent probe of galactic substructure!

Angular power is more sensitive to a spectral line if
$$\frac{\Phi_{\mathrm{Sub}}}{\Phi_{\mathrm{DM}}} > \sqrt{\frac{N_{\gamma}\sigma_{\widetilde{C}}}{\tilde{C}_{\mathrm{Sub}}}}$$
.

The angular power spectrum presents a new paradigm for spectral line searches.

Conclusions

- The substructure content of dark matter halos is an active research topic in the literature.
 - Sensitive to particle dark matter properties and galaxy formation processes.
- Ironically, indirect detection may be the most direct probe of substructure.
- Constraints on substructure requires discovery of annihilation radiation, and depends on the mode of discovery.
- Intensity spectra provide information on the dark matter clumping factors.
- Anisotropy spectra provide independent information on galactic substructure.