VERITAS Galactic Physics

Farzaneh Sheidaei¹
for the VERITAS Collaboration
¹University of Utah

VERITAS

Outline

- Brief introduction to VERITAS
- VERITAS Galactic Science program
- Selection of new Galactic Source Results
 - Pulsar Wind Nebulae (Tycho)
 - Supernova Remnants (CTA 1)
 - ◆ Binary System (HESS 0632+057/VER J0633+057, LSI +61° 303)
 - Cygnus region (TeV 2032+4130, VER J2016+371, VER J2019+407)
 - Crab Nebula flaring

VERITAS

pes. 268 m)

- Four 12-m imaging atmospheric Cherenkov telescopes.
- Located at Whipple Observatory, Arizona, USA (1268 m)
- Full operations began Fall 2007.
- One telescope was moved to new location in summer 2009
- Upgrade High QE PMTs and a New Tel Trigger in 2011-2012
- Energy Range:85 GeV-30 TeV
 Energy Resolution 15-25%
- Angular Resolution < 0.1 deg (68%)
 Sensitivity <25 hr for 1% Crab

VERITAS Galactic Science program

SuperNova Remnants (SNRs)

Galactic Cosmic-Ray Accelerators
There are ~8 SNRs in VHE detected yet

Binary systems

The least numerous class but very puzzling system Two scenarios: Micro-quasar or pulsar binary 4 VHE Binary systems

Pulsar Wind Nebulae

The largest class of identified Galactic VHE gammaray sources

TeV emission from the nebulae of energetic pulsars

> 28 PWNe detected in VHE observatories

VERITAS Galactic Sources

- 46 VHE sources from 8 astrophysical classes
- 28 Extragalactic (62%): 25 blazars, 2 radio galaxies & a starburst galaxy(M82)
- 17 Galactic (38%): Crab pulsar, 2 gamma-ray binaries, 5 pulsar wind nebulae, 4 SNRs & 5 unidentified objects
- Program (~350 h / yr) covers PWNe (~100 h), SNRs (~100 h), binaries (~100 h) and unidentified objects (~50 h)

VERITAS Galactic Sources

- 46 VHE sources from 8 astrophysical classes
- 28 Extragalactic (62%): 25 blazars, 2 radio galaxies & a starburst galaxy(M82)
- 17 Galactic (38%): Crab pulsar, 2 gamma-ray binaries, 5 pulsar wind nebulae, 4 SNRs & 5 unidentified objects
- Program (~350 h / yr) covers PWNe (~100 h), SNRs (~100 h), binaries (~100 h) and unidentified objects (~50 h)

Tycho Supernova Remnants

Historical Type 1a SN (441 yr, d~2-5 kpc)

E2 dF/dE

- 61 hr +20 hr (2009-13)
- E~800 GeV-10 TeV
- 0.9% Crab, hard spectrum
- Γ = 1.95 ± 0.51

Atoyan & Dermer (2012)

Pure leptonic model with multiple emission

zones

• Hadronic Scenario p+p $\rightarrow \pi^0$ +...

$$\pi^0 \rightarrow 2\gamma$$

Fermi-LAT emission

Leptonic Scenario e-+y-> e-+y

10⁻¹ 10⁻² 10⁻³

CO emission Radio contour RA (degrees)

Berezhko et al (2012)

Hadronic dominant. + Interactions with dense clump around SNR

> Zhang et al (2012) Hadronic dominant. emission from MC with energy conversion efficiency of 1% (n=12cm-3)

Park, N., 32nd ICRC 2013

Energy (eV)

Morlino & Caprioli (2012) Hadronic dominant, Multiwavelength

spectrum,

= 470 TeV

CTA 1: A VHE emitting Pulsar Wind Nebula

- Composite/shell type SNR with an X-ray filled radio shell of ~ 1.8°
- Age ~ 13ky, D ~ 1.4 ± 0.3 kpc
- Fermi γ-ray pulsar (2008)
- ◆ P= 316.9ms, E_{cutoff} ~ 5 GeV;
- 40 hrs data 2010-2011, 6.5 $\sigma \rightarrow VER$ J0006+729
- $\delta = 0.25^{\circ} 0.3^{\circ}$
- Γ = 2.2 ± 0.2stat ± 0.3syst 4% of the Crab Nebula
- ◆ E=0.2% of the spin down power.
- 5 arcmin offset from TeV emission
- Properties of CTA 1 nicely fit in the middle of those of known TeV/X-ray PWN

CTA 1: A VHE emitting Pulsar Wind Nebula

- Composite/shell type SNR with an X-ray filled radio shell of ~ 1.8°
- Age ~ 13ky, D ~ 1.4 ± 0.3 kpc
- Fermi γ-ray pulsar (2008)
- ◆ P= 316.9ms, E_{cutoff} ~ 5 GeV;
- 40 hrs data 2010-2011, 6.5 σ → VER J0006+729
- δ =0.25°-0.3°
- → Γ = 2.2 ± 0.2stat ± 0.3syst 4% of the Crab Nebula
- ◆ E=0.2% of the spin down power.
- 5 arcmin offset from TeV emission
- Properties of CTA 1 nicely fit in the middle of those of known TeV/X-ray PWN

Aliu, E. et al., ApJ 764 p38 (2013)

Gamma-ray Binaries (GeV-TeV)

	type	D (kpc)	orbital period [d]	Radio (10 ³¹ erg/s)	1-10 keV (10 ³³ erg/s)	1-10 GeV (10 ³³ erg/s)	0.2-10 TeV (10 ³³ erg/s)
LS 5039	06.5V+neutron star? BH?	2.5	3.9	ie ^{\$3}	5-50	70	4-11
LS I +61 303	Be?+neutron star? BH?	2 (?)	3.9 26.511	1-17	3-9	60	3-8
PSR B1259-63	Be + 48ms pulsar	l	1237	0.02-0.3	0.3-6		2-3
Cygnus X-1	O9.7lab+black hole	2.2	5.6	000	~1x10 ⁴	no detection	12 (??)
Cygnus X-3	Wolf-Rayet + BH?; rel. jet (MQ)	7	0.2 (4.8h)	70	~(3-8)x10 ⁴	5	no detection
1FGL J1018.6-5856	06.5V+neutron star? BH?	5	1 6.6	1-4	variable	150-200	HESS J1018-589?
HESS J0632+057	B0pe + ??	1.5	315	0.03	0.05-1	<9	~0.9

I GRS 1915+105, SS 433, PSR B1259-63

- Fascinating but complicated systems, where the number of models to explain them is much larger than the number of sources
- The emission can involve processes associated with a jet, a stellar wind, a stellar disk, or a pulsar or some combination of these.

HESS J0632+057 / VER J0633+057

A new gamma-ray Binary

- Discovered by HESS in 2004-05,3% Crab
- ◆VERITAS 2008-09 (U.L. < 1.1% Crab), 2010,11 and 2012 show up
- → >3 years of intense X-ray coverage → 321±5 days by swift-XRT (soft x-ray)
 Bongiorno et al. 2011, ApJ, 737, L11
- Not detected by Fermi
- Strong correlation between TeV and X-ray emission

LSI +61° 303

- High-mass X-ray binary system included Be star and unknown compact object (BH or NS)
- ◆Elliptical orbit: e=0.537±0.034
- 2 kpc distance
- •26.5 day orbit
- •A variable TeV source (2-20% Crab) near the apastron (typically)

The emission from the system may go through a complex, multi-year modulation, similar to that seen in radio

LSI +61° 303

Fermi-LAT/VERITAS Contemporaneous Data

- Night to night variability (MJD 55918/55919, MJD 55944/55945)
- No strong evidence for correlation between Swift-XRT and VERITAS or Fermi-LAT and VERITAS observations.
- ◆ TeV Spectrum: Power-law (1.37±0.14)X10⁻⁸ (E/1TeV)^{-2.59 ±0.15} TeV⁻¹m⁻²s⁻¹
- ◆ GeV Spectrum exponential cut-off @ 4 GeV
 - → very similar to GeV pulsars spectrum
- Indication of multiple populations in LSI 61 303
- → explain the lack of correlation between GeV and TeV observations

Aliu, E. et al., submitted (2013)

Connection between Sources

- LSI +61 303/HESS J0632+057: Strong TeV sources near apastron
- HESS J0632+057 no emission in Fermi-LAT data
- LSI +61 303/PSR B1259-63: Very similar SED, with a cut-off in ~few GeV
- Fundamentally different type of binary objects and/or different emission geometry

Connection between Sources

- LSI +61 303/HESS J0632+057: Strong TeV sources near apastron
- HESS J0632+057 no emission in Fermi-LAT data
- LSI +61 303/PSR B1259-63: Very similar SED, with a cut-off in ~few GeV
- Fundamentally different type of binary objects and/or different emission geometry

Galactic sources in Cygnus Region

Cygnus Region

- Rich in star forming activities
- Many potential VHE accelerators

Sky Surveys

- GeV range: EGRET and Fermi-LAT
- TeV range: VERITAS (4%Crab)
- ◆ TeV range: HEGRA(~25% Crab)
- Multi-TeV: Milagro (35% Crab)

VERITAS sky survey

- 2007-09:15° X 5°(I,b)
 115h (survey)+50 h (follow-up)
- **★Extended source near SNR G78.2+2.1 (γ-Cygni)**
- **★Extended source on TeV J2032+4130 (HEGRA)**
- **★Extended source on MGRO J2019+37(MILAGRO)**

TeV J2032+4130 (VER 2031+415)

VERITAS

- First unidentified source (HEGRA)
- Confirmed by MAGIC, Whipple and MILAGRO (MGRO J2031+41)
- Extended source ~6 arcmins
- Detected in the Sky Survey (2007-09)
- Follow-up of 48.2 hr \rightarrow 8.7 σ
- Asymmetric extension major axis: 0.16° ± 0.02° (NW) minor axis: 0.066° ± 0.009°
- ◆~4% Crab nebula
- No clear picture of the nature from other wavelength
- ◆ A new VHE PWN

Aliu, E. et al., in preparation (2013)

MGRO J2019+37

VER J2019+368

VER J2016+371

 One of the three sources discovered by MILAGRO Not resolved, broad feature (1.2°X0.7°)

VERITAS

- VER J2016+371: point source (5.7σ) consistent spatially with SNR CTB 87
- VER J2019+368: extended and consistent spatially with MGRO J2019+37

Multi-wavelength study and interpretation

- CTB 87: PWN in X-ray and VHE γ-ray
 No pulsar detected yet!
- VER J2019+368
 - Multiple sources
 - Power law spectrum (δ=0.5°)
 - $\Gamma = 1.75 \pm 0.08$ stat ± 0.3 sys
 - $\Phi = (1.4 \pm 0.1 \pm 0.3) \times 10^{-12} \text{ ph TeV}^{-1} \text{cm}^{-2} \text{s}^{-1}$
 - Objects in the region: PSR J2021+3651,
 Wolf-Rayet star WR141, IGR J20188+3647, HII region (sh2-104)
 - Extensive multi-wavelength needed

Aliu, E. et al., in preparation (2013)

March 2013 Crab Nebula Flare

- Fermi-LAT: 2-week flaring in March 2013
- VERITAS: 10 days in the flaring episode
- No GeV/TeV flux correlation
- Relative flux change: VERITAS <~5% Fermi-LAT ~600%
- The lifetime for 200MeV sync. Radiation: T_{sy}=(3X10⁵s)(B/1mG)^{-1.5}
- Increasing the magnetic field and injection of a large number of excess electrons at PeV energies.
- The flare electron with γ_{sy}~10⁹ can produce VHE emission in the PeV band with IC mechanism.

Aliu, E. et al., in preparation (2013)

Conclusions

- VERITAS is a state-of-the-art ground-based VHE gamma-ray telescope Array, with wealth of new information about Galactic sources
- VERITAS has taken ~350 hr/year on Galactic sources leading in detecting 17 Galactic sources:
- Deep exposure on Tycho SNR: Expand high energy gamma-ray measurements ~100 GeV-10 TeV to test the existing models
- Deep observation on CTA 1 in the form of PWN
- Binary systems: still unknown and continue to surprise us!
- LSI 61303: multiple populations from GeV to TeV, indication of short-time variation.
- HESS J0632+057: Strong correlation between VHE and X-ray emission. Stable spectral energy distribution
- Cygnus Region: TeV 2032+4130 is a new PWN, VER J2016+371 as a PWN for CTB 87, VER J2019+407(SNR interaction)
- No flare from simultaneous VHE coverage of a GeV Crab flare

Backup

VER J2019+407

VERITAS:

- 21.4 hr follow-up observations with 7.5σ
- Extension of 0.23°±0.03°
- Source at north-west of the SNR G78.2+2.1(γ-Cygni)

CTB 80/B1251