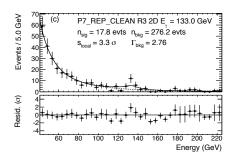
The 135 GeV Fermi Line and MiDM/RayDM at the LHC

Brian Shuve

J. Liu, BS, N. Weiner, I. Yavin, arXiv:1303.4404


Perimeter Institute & McMaster University

TeVPA 2013, UC Irvine

August 28, 2013

Fermi gamma-ray line

- Evidence for a gamma-ray line at 130-135 GeV in Fermi observations of the galactic centre (Bringmann et al.; Weniger; Tempel et al.; Finkbeiner and Su;...)
 - ► Fermi line analysis [arXiv:1305.5597]

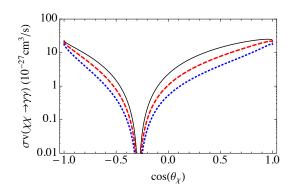
- The origin of the excess is still unclear
- Assuming DM origin of the line, this implies $\sigma(\bar\chi\chi\to\gamma\gamma)v\sim 10^{-28}-10^{-27}~{\rm cm}^3/s$
 - Perhaps "dark" matter is not particularly dark!

MiDM and RayDM

- Dark matter cannot have renormalizable couplings to the photon, but can interact with light through higher-dimensional operators
 - Assume DM is Dirac fermion χ
 - ► Magnetic dipole moment:

$$\mathcal{L}_{\text{eff}} = \frac{\mu_{\chi}}{2} \, \bar{\chi} \sigma^{\mu\nu} B_{\mu\nu} \chi$$

- * There are strong constraints on μ_{χ} from direct detection experiments
- Magnetic inelastic dark matter (MiDM) still viable
- Rayleigh interaction (RayDM):


$$\mathcal{L}_{\text{eff}} = c_{\text{RayDM}} \, \bar{\chi} \chi \left(\cos \theta_{\chi} \, B^{\mu\nu} B_{\mu\nu} + \sin \theta_{\chi} \, \text{Tr} \, W^{\mu\nu} W_{\mu\nu} \right)$$

 Both MiDM and RayDM interactions can account for relic abundance and Fermi line

(Weiner and Yavin, arXiv:1206.2910)

MiDM and RayDM

- Example: Line cross section from RayDM
 - ullet c_{Ray} normalized so that total annihilation cross section gives thermal relic abundance

MiDM and RayDM: Effective Field Theory

- \bullet MiDM and RayDM are higher-dimensional operators in an effective field theory with mass scale Λ
 - Generically expect both to appear: $\mu_{\chi} \sim 1/\Lambda$, $c_{\rm Ray} \sim 1/\Lambda^3$
- Effective field theories break down at $E \gtrsim \Lambda$
 - ▶ Indicates existence of new particles with $M \propto \Lambda$
 - Since MiDM/RayDM operators are generated at loop level, the relation between couplings and masses is

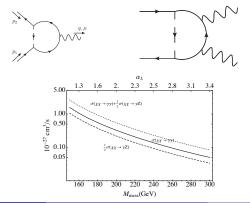
$$M \sim \frac{\lambda^2 g_{\rm EW} \Lambda}{16\pi^2}$$

- Relic abundance and Fermi line cross section can be obtained with $\Lambda \sim \mathcal{O}(500~{\rm GeV})$
 - ▶ In a perturbative theory ($\lambda < 4\pi$), this implies $M \sim \mathcal{O}(100~{\rm GeV})!$

MiDM and RayDM: Effective Field Theory

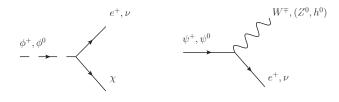
- \bullet MiDM and RayDM are higher-dimensional operators in an effective field theory with mass scale Λ
 - Generically expect both to appear: $\mu_{\chi} \sim 1/\Lambda$, $c_{\rm Ray} \sim 1/\Lambda^3$
- ullet Effective field theories break down at $E\gtrsim \Lambda$
 - Indicates existence of new particles with $M \propto \Lambda$
 - Since MiDM/RayDM operators are generated at loop level, the relation between couplings and masses is

$$M \sim \frac{\lambda^2 g_{\rm EW} \Lambda}{16\pi^2}$$


- Relic abundance and Fermi line cross section can be obtained with $\Lambda \sim \mathcal{O}(500~{\rm GeV})$
 - ▶ In a perturbative theory ($\lambda < 4\pi$), this implies $M \sim \mathcal{O}(100 \text{ GeV})!$

Gamma-ray lines with weak-scale cross sections naturally imply new charged states at the weak scale that are accessible at LHC/ILC!

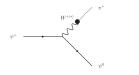
- To study collider phenomenology, we need a specific UV completion
- Choose theory with a Dirac fermion ψ and a complex scalar φ as messengers: (Weiner and Yavin, arXiv:1209.1093)


$$\mathcal{L}_{\mathrm{UV}} = \lambda \, \bar{\psi} \chi \varphi$$

Generate magnetic dipole and Rayleigh operators at one loop

- Consider direct production of the charged states
 - Phenomenology largely factorizes from details of dark sector interactions
- Yukawa theory contains both fermions and scalars of arbitrary charge, so can accommodate the phenomenology of a much wider range of models
- Classify the scenarios according to the properties of φ and ψ :
 - ightharpoonup Discrete charges under the symmetry stabilizing DM (usually Z_2)
 - Electroweak gauge charges
 - ightharpoonup Allowed decay modes of \mathbb{Z}_2 -even state(s) (assume one Lagrangian term dominates decay)
- Determine current collider constraints and future reach
 - Focus on colour-singlet charged states

- Three broad classes of models:
 - **1** Z_2 -odd scalar: fermion decays to/mixes with SM
 - * Includes 'vectorlike lepton' scenario
 - ★ Fermion decays to gauge/Higgs + lepton; scalar decays to lepton + DM


- Three broad classes of models:
 - **1** Z_2 -odd scalar: fermion decays to/mixes with SM
 - ★ Includes 'vectorlike lepton' scenario
 - ★ Fermion decays to gauge/Higgs + lepton; scalar decays to lepton + DM
 - ② Z_2 -odd fermion: scalar decays to/mixes with SM
 - * Includes extended Higgs sector models
 - Scalar decays through Higgs mixing; fermion decays through mixing induced by scalar VEV
 - Strong constraints on scalar VEV from EWPT and photon continuum constraints

- Three broad classes of models:
 - **1** Z_2 -**odd scalar:** fermion decays to/mixes with SM
 - ★ Includes 'vectorlike lepton' scenario
 - ★ Fermion decays to gauge/Higgs + lepton; scalar decays to lepton + DM
 - 2 Z_2 -odd fermion: scalar decays to/mixes with SM
 - ★ Includes extended Higgs sector models
 - Scalar decays through Higgs mixing; fermion decays through mixing induced by scalar VEV
 - Strong constraints on scalar VEV from EWPT and photon continuum constraints

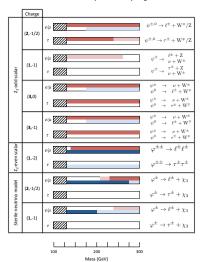
Extended symmetry:

- * One possibility: no new interactions, lightest components of ψ and φ both stable (similar to Feng, Moroi, Randall *et al.*, 1999 and subsequent work)
- \star Another: if there is an additional singlet state n, then Z_2 -even messenger can decay into SM + n

- Three broad classes of models:
 - **1** Z_2 -odd scalar: fermion decays to/mixes with SM
 - ★ Includes 'vectorlike lepton' scenario
 - ★ Fermion decays to gauge/Higgs + lepton; scalar decays to lepton + DM
 - ② Z_2 -odd fermion: scalar decays to/mixes with SM
 - ★ Includes extended Higgs sector models
 - Scalar decays through Higgs mixing; fermion decays through mixing induced by scalar VEV
 - Strong constraints on scalar VEV from EWPT and photon continuum constraints
 - Extended symmetry:
 - * One possibility: no new interactions, lightest components of ψ and φ both stable (similar to Feng, Moroi, Randall *et al.*, hep-ph/9904250 and later work)
 - Another: if there is an additional singlet state n, then Z_2 -even messenger can decay into $\mathsf{SM} + n$
- Some of these are reminiscent of SUSY, 2HDM, etc., but different gauge charges and decay modes allowed in some cases
 - Motivate more general electroweak searches

Gauge charges and decay modes

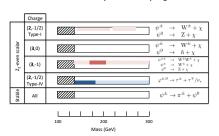
- Consider "reasonable" gauge charges
 - ▶ Higher SU(2)_L multiplets have large cross sections
 - Avoid exotic hypercharges to allow renormalizable decays in minimal model


$\mathrm{SU}(2) imes \mathrm{U}(1)$ charge	Z_2 -odd $arphi$	Z_2 -odd ψ
(1, -1)	$\ell H^* \psi^{\mathrm{c}}$	$\varphi(\epsilon \ell_i)\ell_j$
$\left(2,-rac{1}{2} ight)$	$\psi H^* e^{c}$	$\mathcal{L}_{\mathrm{2HDM}}(arphi,h)$
(3 , 0)	$(\epsilon H) \psi^a \sigma^a \ell$	$H^*\varphi H$
(3, -1)	$\ell(\psi^{\rm c})^a \sigma^a H^*$	$(\epsilon H)\varphi^a\sigma^a H (\epsilon \ell)\varphi^* \ell$

Qualitative results

- What kinds of models do we expect to be ruled out? To be accessible at LHC14? To be challenging and study more intensively?
 - Dilepton/multilepton searches strongly constrain particles decaying to leptons
 + gauge bosons or leptons + MET
 - Large SU(2) multiplets are mostly ruled out, while singlets are much less constrained
 - Tau final states and decays with large QCD backgrounds are among the least constrained signatures
 - Scalars are generally less constrained than fermions because of lower production cross section
 - $ightharpoonup Z_2$ -odd states are generally less constrained, particularly for squeezed spectra

Results summary


Generation-specific couplings

- Fermion bounds in red
- Scalar bounds in blue
- Dark shading is already excluded at 95 % CL
- Light shading is within reach of LHC at 14 TeV, 300/fb
- $\begin{tabular}{ll} \bullet & {\rm Cross-hatch \ indicates} \\ m < m_\chi \end{tabular}$

Results summary

Generation-independent couplings

- Fermion bounds in red
- Scalar bounds in blue
- Dark shading is already excluded at 95 % CL
- Light shading is within reach of LHC14, 300/fb
- $\begin{tabular}{ll} \bullet & {\rm Cross-hatch \ indicates} \\ m < m_\chi \end{tabular}$

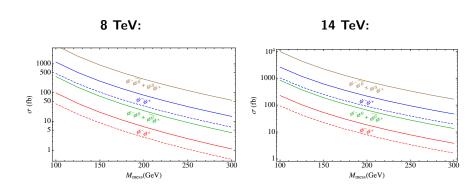
Conclusions and Outlook

- The potential observation of a gamma-ray line around 135 GeV provides an independent motivation for new charged states at the weak scale
- Classified models by the allowed couplings to SM consistent with gauge and discrete symmetries; parameterization applies across UV theories
 - We determined current constraints and future reach
- Many models are ruled out by dilepton + MET and multilepton searches
- \bullet Models with SU(2) singlets and tau-rich final states are less constrained but can be probed at LHC14
- A few examples ($\tau\tau$ + MET or disappearing charged tracks) are challenging at the LHC

Back-up slides

Back-up slides

Relations between EFT and UV completion


MiDM:

$$\mu_{\chi} = \frac{\lambda^2 g'}{32\pi^2 M_{\psi}}$$

RayDM:

$$c_{\rm Ray} = \frac{g^2 \lambda^2 C_f}{48 M_{\psi}^3 \pi^2} f(m_{\psi}/m_{\varphi})$$

Messenger production cross sections

- Dashed: SU(2) singlet, Y = 1
- Solid: SU(2) doublet, Y = 1/2