The TeV Cosmic-Ray Anisotropy from Local Dark Matter Annihilation

arXiv:1307.6537

J. Patrick Harding LANL TeVPA 28 August 2013

TeV CR Anisotropy

Milagro + IceCube TeV Cosmic Ray Data (10° Smoothing)

TeV CR Anisotropy

Milagro + IceCube TeV Cosmic Ray Data (10° Smoothing)

• Los Alamos NATIONAL LABORATORY EST. 1943

TeV CR Anisotropy

Milagro + IceCube TeV Cosmic Ray Data (10° Smoothing)

- •10⁻⁴-10⁻³ excess over the isotropic intensity
- Anisotropy observed at 10° angular scales at tens of TeV
- Hadrons, not electrons or photons

- •From propagation over long distances, CRs should be isotropized due to diffusion in the turbulent magnetic field.
- •For 10 TeV CRs, the Larmor radius in the local 2 μ G magnetic field is only 0.005 pc
- •For a source of neutrons, the decay length of a 10 TeV neutron is 0.1 pc
- No source of CRs is so close to Earth
- •Coherent magnetic field connecting the source to Earth can do it
 - But must be <100 pc long, with shorter lengths increasingly likely
- •Must have both non-standard propagation and a nearby source

Anisotropy from DM

- •Left: Milagro-consistent spectra (green region) vs DM spectral parameters
 - W+W- (stars), Z0Z0 (crosses), bb (circles) from 20-200 TeV
- •Right: 60 TeV W⁺W⁻ (red), 50 TeV Z⁰Z⁰ (blue), 100 TeV bb (magenta) vs Milagro spectrum
 - Need better error bars to distinguish spectra
 - Energy losses during propagation should shift peaks to right and soften cutoffs

Local Dark Matter Subhalo

- Expect many subhalos from DM substructure
- Minimum distance D_{\min} to a subhalo consistent with the local DM density
- Scaling with subhalo mass from Bolshoi simulation

$M_{\rm vir}$	D_{min}	$J_{\Delta\Omega}(D_{ ext{min}})$	$J_{\Delta\Omega}(D_{\rm min}\text{-}100~{ m pc})$
$10^9 M_{\odot}$	933 pc	119	137
$10^8 M_{\odot}$	465 pc	114	158
$10^7 M_{\odot}$	225 pc	112	247
$10^6 M_{\odot}$	108 pc	112	2840
$10^5 M_{\odot}$	51.3 pc	111	-
$10^4 M_{\odot}$	24.1 pc	110	-
$10^3 M_{\odot}$	11.2 pc	109	-

- DM flux to source is ~ independent of subhalo mass
- DM flux to magnetic stream is highly scenario-dependent

Antiproton and Positron Constraints

- •Total flux from DM subhalo compared to total isotropic flux from limits (for 0.03 sr region)
 - Should be seen at ~10⁻⁴-10⁻³ small-scale anisotropy in 100s of GeV
- •Shown: 60 TeV W⁺W⁻ (red), 50 TeV Z⁰Z⁰ (blue), 100 TeV bb (magenta)

Gamma-Ray Constraints

- •Experimental sensitivities to 5°-extended gamma-ray sources
- Fermi 5-year sensitivity to 1°-extended gamma-ray source shown as well
- •Shown: 60 TeV W+W- (red), 50 TeV Z0Z0 (blue), 100 TeV bb (magenta) DM fluxes

Particle Constraints

- Meets all constraints:
 - Diffuse anti-protons (PAMELA, ARGO)
 - Diffuse positrons (AMS)
 - But pointed could detect it
 - All-sky gamma-rays (Fermi, Milagro)
 - For expected extended source
 - Pointed gamma-rays (HESS, VERITAS, MAGIC)
 - Would see it if they look at it for ~50 hours
 - HAWC
 - Will detect it, if dec > -30

Discussion

- Small-scale anisotropies have been observed in the TeV cosmic rays
- Non-standard propagation and a local CR source are needed
- Local dark matter subhalos can be the source of the anistropy
- Gamma-ray emission from the subhalo causing the Region A excess should be observable by HAWC