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4 Sánchez-Conde & Prada

as done in P12 and shown in the right panel of Fig. 1. In

such c – σ(M)
−1

plane, the P12 model adopts a character-

istic U-shape, with its minimum value corresponding to the

natal concentration of DM halos. We propose that halo evo-

lution tracks follow this U-shape from right to left, in such

a way that halos found to the right of the minimum (σ < 1)

are not formed yet, while halos located to the left already

have collapsed. This is supported by the fact that at the

high-mass end (σ < 1) the median halo kinematic profiles

show large signatures of infall and highly radial orbits (see

P12). As the P12 model was derived and tested between

−0.5 � log[σ(M)]
−1 � 0.5 (i.e., the range around the U-

shape minimum) by using Bolshoi and Multidark data at

different redshifts, the model can be safely used to predict

concentration values of any simulation data whose σ(M) val-

ues lie within that particular tested interval of the U-shape.

As shown in the right panel of Fig. 1, this is exactly the case

for all the simulation data set displayed in the left panel of

the same figure. Thus, no extrapolation of the P12 model

is done, which also explains its remarkable agreement with

simulations.

Finally, we provide a simple parametrization of the

concentration-mass relation provided by the P12 model at

z = 0, that will turn out to be very useful for the next sec-

tion, where we will compute the expected substructure halo

boosts to the dark matter annihilation signal:

c200(M200, z = 0) =

5�

i=0

ci ×
�
ln

�
M200

h−1M⊙

��i

, (1)

where ci = [37.5153,−1.5093, 1.636 · 10−2, 3.66 · 10−4,
−2.89237 · 10−5, 5.32 · 10−7

]. This parametrization, inspired

on the functional form proposed by Lavalle et al. (2008),

provides an accuracy better than 1% in the halo mass range

between 10
−6 < h−1M⊙ < 10

15
. It also captures the char-

acteristic c(M) upturn at higher masses found in Prada et

al. (2012). We note that, interestingly, the best fit to VL-II

(subhalo) concentrations found by Pieri et al. (2011) agrees

very well with Eq.(1) in the mass range well resolved in that

simulation, i.e. 10
5 � h−1M⊙ � 10

9
, desviations becoming

only relevant at lower and, very specially, higher masses.

4 HALO SUBSTRUCTURE BOOSTS TO THE
DARK MATTER ANNIHILATION SIGNAL

An important open question today is the role of DM sub-

structure in γ-ray DM searches. Indeed, DM substructure

might represent the key component in future DM search

strategies for several reasons. In particular, as the DM an-

nihilation γ-ray signal is proportional to the DM density

squared, the clumpy distribution of subhalos inside larger

halos expected in ΛCDM may boost the DM annihilation

flux considerably. This flux enhancement is more important

for the most massive halos as they enclose more hierarchical

levels of structure formation. The effect of substructures on
the DM annihilation flux (frequently known as substructure
boost) has already been studied both analytically, e.g., Pieri

et al. (2008); Lavalle et al. (2008); Mart́ınez et al. (2009), and

making use of N-body simulations, e.g., Kuhlen et al. (2008);

Springel et al. (2008). It is a challenge to calculate ana-

lytically the survival probabilities of substructures within

their host halos, while state-of-the-art N-body simulations

are computational prohibited to simulate the sub-halo hi-

erarchy below a mass ∼10
5h−1M⊙, still very far from the

predicted halo cut-off mass, of the order of 10
−6h−1M⊙ or

even smaller, e.g., (Green, Hofmann, & Schwarz 2004; Pro-

fumo et al. 2006).

Most popular substructure boost models (e.g., Pinzke

et al. (2011); Gao et al. (2011)) implicitly rely on power-

law extrapolations of the c(M) relation below the resolution

limit of N-body simulations all the way down to the min-

imum halo mass. Thus, these power-law extrapolations as-

sign very high concentrations to the smallest halos. As the

annihilation luminosity of a given halo scales as L ∝ c3,
the substructure boosts obtained in this way are usually

very large. Furthermore, the results are very sensitive to the

power-law index used in such extrapolations. However, as

already shown, these power-law extrapolations are not ex-

pected in the ΛCDM cosmology. Indeed, as small halos over

a broad range of masses collapse at nearly the same time in

the early Universe (given the shape of P (k)), and natal con-

centrations are set by the halo formation epoch, low-mass

halos possess rather similar natal concentrations, and thus

will also possess similar concentrations at the present time.

This fact translates in a flattening of c(M) at low masses,

which is evident in the left panel of Fig. 1. We remark that,

ultimately, natal halo concentrations are the key for this to

happen. In the following, we will calculate the substructure

boosts implied by the P12 model. We note that by doing

so we assume the P12 model to be also a good representa-

tion of subhalo concentrations. This is partially supported

by the fact that most subhalos at present time have been

accreted by their hosts at late times, up to 70% after z=0.5

according to some estimates, the latter being almost inde-

pendent of subhalo or parent halo mass (Gao et al. 2004).

Therefore, concentrations of field halos should be a fair es-

timate of those typical of subhalos of the same mass. Nev-

ertheless, subhalos are known to have slightly higher con-

centrations, the closer they lie from their host halo centers

the larger their concentrations, e.g., Diemand et al. (2008b).

Thus, overall, the P12 substructure boosts will represent a

lower limit to their actual values.

To compute the boosted annihilation luminosity of a

halo of mass M due to substructures, it is necessary to inte-

grate subhalo annihilation luminosities all the way down to

the minimum subhalo mass, Mmin. Since subhalos also host

sub-substructure, ideally, all levels of substructure should be

included. We define the boost B(M) as follows (Strigari et

al. 2007; Kuhlen et al. 2008):

B(M) =
1

L(M)

� M

Mmin

(dN/dm) [1 +B(m)] L(m) dm (2)

where L(M) = 4πMc3/f(c)2 is the halo annihilation

luminosity with no substructures, c being the concentra-

tion and f(c) = log(1 + c) − 1/(1 + c), and dN/dm =

A/M (m/M)
−α

is the subhalo mass function. Values for

α ranging between α = 1.9− 2 are possible (Diemand et al.

2007; Madau et al. 2008; Springel et al. 2008). The normal-

ization factor A is chosen to match the amount of substruc-

ture resolved in current simulations, and is equal to 0.XXX

and 0.XXX for α = 1.9 and 2, respectively. Note that fol-

lowing the definition of the boost in Eq. (2), an scenario

with no boost would be given by B = 0, while a value of
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as done in P12 and shown in the right panel of Fig. 1. In
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istic U-shape, with its minimum value corresponding to the

natal concentration of DM halos. We propose that halo evo-

lution tracks follow this U-shape from right to left, in such

a way that halos found to the right of the minimum (σ < 1)

are not formed yet, while halos located to the left already

have collapsed. This is supported by the fact that at the

high-mass end (σ < 1) the median halo kinematic profiles

show large signatures of infall and highly radial orbits (see

P12). As the P12 model was derived and tested between

−0.5 � log[σ(M)]
−1 � 0.5 (i.e., the range around the U-

shape minimum) by using Bolshoi and Multidark data at

different redshifts, the model can be safely used to predict

concentration values of any simulation data whose σ(M) val-

ues lie within that particular tested interval of the U-shape.

As shown in the right panel of Fig. 1, this is exactly the case

for all the simulation data set displayed in the left panel of

the same figure. Thus, no extrapolation of the P12 model

is done, which also explains its remarkable agreement with
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Finally, we provide a simple parametrization of the

concentration-mass relation provided by the P12 model at

z = 0, that will turn out to be very useful for the next sec-

tion, where we will compute the expected substructure halo

boosts to the dark matter annihilation signal:
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−2.89237 · 10−5, 5.32 · 10−7

]. This parametrization, inspired

on the functional form proposed by Lavalle et al. (2008),

provides an accuracy better than 1% in the halo mass range

between 10
−6 < h−1M⊙ < 10

15
. It also captures the char-

acteristic c(M) upturn at higher masses found in Prada et

al. (2012). We note that, interestingly, the best fit to VL-II

(subhalo) concentrations found by Pieri et al. (2011) agrees

very well with Eq.(1) in the mass range well resolved in that

simulation, i.e. 10
5 � h−1M⊙ � 10
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might represent the key component in future DM search

strategies for several reasons. In particular, as the DM an-

nihilation γ-ray signal is proportional to the DM density

squared, the clumpy distribution of subhalos inside larger

halos expected in ΛCDM may boost the DM annihilation

flux considerably. This flux enhancement is more important

for the most massive halos as they enclose more hierarchical

levels of structure formation. The effect of substructures on
the DM annihilation flux (frequently known as substructure
boost) has already been studied both analytically, e.g., Pieri

et al. (2008); Lavalle et al. (2008); Mart́ınez et al. (2009), and

making use of N-body simulations, e.g., Kuhlen et al. (2008);

Springel et al. (2008). It is a challenge to calculate ana-

lytically the survival probabilities of substructures within

their host halos, while state-of-the-art N-body simulations

are computational prohibited to simulate the sub-halo hi-

erarchy below a mass ∼10
5h−1M⊙, still very far from the

predicted halo cut-off mass, of the order of 10
−6h−1M⊙ or

even smaller, e.g., (Green, Hofmann, & Schwarz 2004; Pro-

fumo et al. 2006).

Most popular substructure boost models (e.g., Pinzke

et al. (2011); Gao et al. (2011)) implicitly rely on power-

law extrapolations of the c(M) relation below the resolution

limit of N-body simulations all the way down to the min-

imum halo mass. Thus, these power-law extrapolations as-

sign very high concentrations to the smallest halos. As the

annihilation luminosity of a given halo scales as L ∝ c3,
the substructure boosts obtained in this way are usually

very large. Furthermore, the results are very sensitive to the

power-law index used in such extrapolations. However, as

already shown, these power-law extrapolations are not ex-

pected in the ΛCDM cosmology. Indeed, as small halos over

a broad range of masses collapse at nearly the same time in

the early Universe (given the shape of P (k)), and natal con-

centrations are set by the halo formation epoch, low-mass

halos possess rather similar natal concentrations, and thus

will also possess similar concentrations at the present time.

This fact translates in a flattening of c(M) at low masses,

which is evident in the left panel of Fig. 1. We remark that,

ultimately, natal halo concentrations are the key for this to

happen. In the following, we will calculate the substructure

boosts implied by the P12 model. We note that by doing

so we assume the P12 model to be also a good representa-

tion of subhalo concentrations. This is partially supported

by the fact that most subhalos at present time have been

accreted by their hosts at late times, up to 70% after z=0.5

according to some estimates, the latter being almost inde-

pendent of subhalo or parent halo mass (Gao et al. 2004).

Therefore, concentrations of field halos should be a fair es-

timate of those typical of subhalos of the same mass. Nev-

ertheless, subhalos are known to have slightly higher con-

centrations, the closer they lie from their host halo centers

the larger their concentrations, e.g., Diemand et al. (2008b).

Thus, overall, the P12 substructure boosts will represent a

lower limit to their actual values.

To compute the boosted annihilation luminosity of a

halo of mass M due to substructures, it is necessary to inte-

grate subhalo annihilation luminosities all the way down to

the minimum subhalo mass, Mmin. Since subhalos also host

sub-substructure, ideally, all levels of substructure should be

included. We define the boost B(M) as follows (Strigari et

al. 2007; Kuhlen et al. 2008):

B(M) =
1

L(M)
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(dN/dm) [1 +B(m)] L(m) dm (2)

where L(M) = 4πMc3/f(c)2 is the halo annihilation

luminosity with no substructures, c being the concentra-

tion and f(c) = log(1 + c) − 1/(1 + c), and dN/dm =

A/M (m/M)
−α

is the subhalo mass function. Values for

α ranging between α = 1.9− 2 are possible (Diemand et al.

2007; Madau et al. 2008; Springel et al. 2008). The normal-

ization factor A is chosen to match the amount of substruc-

ture resolved in current simulations, and is equal to 0.XXX
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2.1.4 Scatter

It is important to include in the calculations a scatter in the concentration values. We will assume

THE SAME scatter for the three scenarios described above (MAX,MED,MIN). Intrinsic to the

stochastic process of halo formation, the concentration of individual haloes scatters around the

median c provided by the quantities cvir(M) and csub(M,Dgc), respectively. The corresponding

probability distribution follows a lognormal (see e.g. Ref. [1]):

P (c, c) =
log10 e√
2πσlog10 c c

exp

�
−1

2

�
log10 c− log10 c

σlog10 c

�2
�
, (4)

where σlog10 c = 0.14 [3, 5].

2.2 Subhalo mass function

2.3 Subhalo radial distribution

2.4 Other useful formulae

1. Distance cut for subhalo detectability: we will assume that we cannot detect subhalos

with J-factors smaller than R times (e.g. one tenth) the Draco J-factor JD. Then, the cut in

distance as a function of the subhalo mass is given by:

Dcut(M) ≈

�
M D2

D c(M)3 f(cD)2

R f(c)2 MD c3D
(5)

where f(c) = ln(1 + c)− c/(1 + c), and the subindex D refers to Draco. We will take DD = 80

kpc, MD = 8×10
8M⊙, cD = 19, R = 0.1. As for c(M), we should take the MAX case described

in previous sections in order to be safe in our distance cut. The safer cut would be the one

provided by the Aquarius subhalo concentration (as the corresponding formula gives us the

highest c amongst all the formulae that we have for c).

2.5 Tidal radius and disruption of halos

We’ll use the Roche criterium (see e.g. to estimate the tidal radius, rt of a subhalo with mass

Msub located at a distance Rsub from the Galactic Center [6]:

rt =

�
Msub

3 MMW (< Rsub)

�1/3

×Rsub (6)

3

6 The Dark Matter Annihilation Signal from Galactic Substructure: Predictions for GLAST

Fig. 3.— The annihilation luminosity boost factor due to sub-
structure below VL-II’s resolution limit versus subhalo mass, for
different subhalo mass functions. Top panel: Dependence on the
cutoff mass m0 for slope α = 2.0. Bottom panel: Dependence on
α for m0 = 10−6 M".

rvir/rs is given by

L̃(M, c) ∝ ρ2
sr

3
s ∝ M

c3

f(c)2
, (7)

where f(c) = ln(1 + c) − c/(1 + c). We use the
Bullock et al. (2001) concentration-mass relation for field
halos, albeit with a somewhat smaller value of the nor-
malization, K = 3.75 (as suggested by Kuhlen et al.
2005; Macciò et al. 2007). For the cosmology used in
the VL simulations and halos masses between 106 and
1010 M!, the c(M) relation is approximately c(M) ≈
18(M/108 M!)−0.06, which corresponds to L̃(M) ∝
M0.87, i.e. the annihilation luminosity scales almost
linearly with mass, in agreement with results from nu-
merical simulations (Stoehr et al. 2003; Diemand et al.
2007a). Note that in our numerical simulations we find
systematically higher subhalo concentrations closer to
the host halo center. This trend does not affect the mag-

nitude of the boost factor, but translates to a radial trend
in subhalo luminosity (see Section 3.1).

Eq. 6 is solved numerically using the boundary con-
dition B(m0) = 0. The resulting relation is plotted in
Fig. 3, for α = 2.0 and different values of m0 in the top
panel, and for m0 = 10−6 M! and different values of α
in the bottom panel. Overall we find relatively modest
boost factors on the order of a few, ranging up to ∼ 10
for the most massive subhalos. Generally more massive
halos have larger boost factors, simply because their sub-
halo population covers more of the total subhalo hierar-
chy. For the same reason, smaller values of m0 lead to
larger boost factors. For α < 2.0 B(M) has a weaker
mass dependence and is less sensitive to m0, since in this
case more massive halos are relatively more important.
Our results are in agreement with the analytic upper lim-
its of Strigari et al. (2007a) and the recent calculations
of Lavalle et al. (2008).

A fit to the cumulative subhalo mass function in our
simulations is consistent with α = 2 (Diemand et al.
2007a), which implies equal mass in subhalos per decade
of subhalo mass. However, fits to the differential mass
function tend to favor slightly shallower slopes of 1.8−1.9
(Stoehr et al. 2003; Madau et al. 2008), possibly because
they are more sensitive to the lower mass end, where res-
olution effects may artificially flatten the slope. In this
work we use α = 2.0 and m0 = 106 M! as our fiducial
model, but present results for a range of different α and
m0.

2.3. Central Flux Corrections

The host halo center is another area where our simu-
lation must be corrected to account for the artificially
low density caused by the finite numerical resolution
(Diemand et al. 2004b). Based on numerical convergence
studies (Diemand et al. 2005a) we believe that we can
trust the radial density profile of the VL-I host halo
down to rconv = 3.4×10−3r200 = 1.3 kpc (Diemand et al.
2007a), corresponding to about 10◦ from the center. The
higher mass resolution and improved time-step criterion
in VL-II results in a much smaller convergence radius of
rconv = 380 pc. The flux derived directly from the simu-
lated particles in VL-II will thus only underestimate the
true annihilation flux within the inner ∼ 2◦ from the
center. An additional uncertainty arises from the fact
that our purely collisionless DM simulation completely
neglect the effect of baryons. While this is not a prob-
lem for the signal from individual subhalos, which are
small enough that baryonic effects are likely negligible,
the central region of our host halo most likely would have
been affected by gas cooling, star formation, and stellar
dynamical processes. It is not immediately obvious how
such baryonic effects would alter the central DM distri-
bution. Adiabatic contraction (Blumenthal et al. 1986;
Gnedin et al. 2004a) would lead to a steepening of the
central DM density profile at scales of a few kpc and be-
low. A recent study of scaling relations in spiral galaxies,
however, seems to favor models of spiral galaxy formation
without adiabatic contraction, and suggests that clumpy
gas accretion might have reduced central DM densities
(Dutton et al. 2007). Stirring by a stellar bar could also
eject DM from the central regions (Weinberg & Katz
2007, and references therein). On much smaller scales
(central few pc), the presence of a supermassive black
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Fig. 2.— Sub-substructure in four of VL-II’s most massive subhalos. Shown are projections of ρ2 for all particles within a subhalo’s
outer radius rsub. The dashed circle indicates the subhalo’s r1000. The clumpy sub-substructure boosts the total annihilation luminosity
of its host subhalo.

=
1

L̃(M)

∫ m1

m0

dN

dm
[1 + B(m)] L̃(m)dm. (5)

Here dN/dm is the sub-subhalo mass function, and the
integration extends from m0, the low mass cut-off of
the substructure hierarchy, to an upper limit of m1 =
min{106 M!, 0.1M}, such that only substructure below
VL-II’s resolution limit of ∼ 106 M! contribute. For
subhalos below 107 M! we cap the integration at 0.1M
under the assumption that efficient dynamical friction
would have lead to the tidal destruction of larger sub-
subhalos. For a power law substructure mass function

dN/dm = A/M(m/M)−α, Eq. 5 becomes

B(M) =
A

L̃(M)

∫ ln m1

ln m0

( m

M

)1−α
[1 + B(m)] L̃(m)dln m.

(6)
Motivated by our numerical simulations
(Diemand et al. 2004a, 2007a) and semi-analytic
studies (Zentner & Bullock 2003), we normalize the
sub-subhalo mass function by setting the mass fraction
in subclumps with masses 10−5 < m/M < 10−2 equal
to 10%.

For the determination of L̃(M) we have assumed an
NFW density profile, in which case the total annihilation
luminosity of a halo of mass M and concentration c =
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Figure 11. Dependence of halo concentration c on log σ−1 after
rescaling all the results of Bolshoi and MultiDark simulations to
z = 0. The plot shows a tight intrinsic correlation of C on σ′.

and

σ−1

0 = 1.047, σ−1

1 = 1.646, β = 7.386, x1 = 0.526. (22)

Accurate approximations for the rms density fluctua-
tion σ(M,a) for the cosmological parameters of the Bol-
shoi/MultiDark simulations are given in Klypin et al. (2010)
and for convenience are reproduced here:

σ(M,a) = D(a)
16.9 y0.41

1 + 1.102 y0.20 + 6.22 y0.333
, (23)

y ≡
[

M

1012h−1M#

]−1

.

Figure 10 shows the evolution of cmin and σ−1

min
with

“time” x, and presents the approximations given in eqs.(19-
20). The evolution is clearly related with the transition from
the matter dominated period (Ωm(a) ≈ 1, x < 0.3) to the
Λ-dominated one with x > 0.7. Approximations for the
halo concentration are presented in Figure 8 for some red-
shifts. The parameters A, b, c, d of the C(σ′) relation are de-
termined from the best fit to the concentration–σ(M) Bol-
shoi/MultiDark data at all redshifts.

Here is a step-by-step description how to estimate halo
concentration:

• For given mass M and a = 1/(1 + z) find x, D(a), and
σ(M,a) using eqs. (13, 12, 16 or 23)

• Use eq. (18) to find parameters B0 and B1.
• Use eqs. (15-16) to find σ′ and C
• Use eq. (14) to find halo concentration c(M, z).

We present the final results and approximations in two
different forms. Functions B0 and B1 can be used to find
values of C and σ′, which is effectively the same as rescal-
ing concentrations c(σ, x) measured in simulations to the

Figure 12. Halo mass–concentration relation of distinct halos at
different redshifts in the Bolshoi (open symbols) and MultiDark
(filled symbols) simulations is compared with analytical approxi-
mation eqs.(14-16 (curves)). The errors of the approximation are
less than a few percent.

same redshift z = 0. Figure 11 shows results of simulations
rescaled in this way. The U-shape of C(σ′) is clearly seen.
The C(σ′) function to some degree plays the same role for
concentrations as the function f(σ) for the mass function
in eqs.(3-4). It tells us that there is little evolution in the
dependence of concentration with mass once intrinsic scal-
ings (e.g., x instead of expansion parameter) are taken into
account.

Another way of showing the approximations is simply
plot eqs. (14-16) for different redshifts and compare the re-
sults with the median concentration - mass relation in our
simulations. This comparison is presented in Figure 12. It
shows that the errors of the approximation are just a few
percent for the whole span of masses and redshifts.

6 SUMMARY AND CONCLUSIONS

We study the halo concentrations in the ΛCDM cosmology,
from the present up to redshift ten, over a large range of
scales going from halos similar to those hosting dwarf galax-
ies to massive galaxy clusters, i.e. halo maximum circular
velocities ranging from 25 to 1800 km s−1 (about six orders
of magnitude in mass), using cosmological simulations with
high mass resolution over a large volume. The results pre-
sented in this paper are based on the Bolshoi, MultiDark,
and Millennium-I and II simulations. There is a good con-
sistency among the different simulation data sets despite
the different codes, numerical algorithms, and halo/subhalo
finders used in our analysis.

The approximations given here for the evolution of the
halo concentration constitute the state-of-the-art of our cur-
rent knowledge of this basic property of dark matter halos

d-*,*WV!"!"dV!"

U4;>E"i"d-*,*N"/+"B-.BCX"

L./D3/->,-(./&D&O&:?(>&P&>'&

"
-"7J*1.7"^/()"6*77"*+,"-.,7)/?(""
L.C0CN"&@11'JcWYVN\)*'WY#NYPj"
4*JJ/'WYPN8*'WYPN"d-*,*WV!O"
"

"

"

"
"



MultiDark
Bolshoi
Colín!04
VL"II
Anderhalden & Diemand 13
Diemand!05
Diemand!05
P12
M08

!5 0 5 10 15

0.5

1.0

1.5

2.0

Log10 M200 !h!1M!"

Lo
g 1
0
c 2
00

z # 0

L*>>3/-&W/.X+32Q3&.B&-A3&DTCU&>3+,-(./&,-&YO5&

10 F. Prada, et al.

Figure 11. Dependence of halo concentration c on log σ−1 after
rescaling all the results of Bolshoi and MultiDark simulations to
z = 0. The plot shows a tight intrinsic correlation of C on σ′.

and

σ−1

0 = 1.047, σ−1

1 = 1.646, β = 7.386, x1 = 0.526. (22)

Accurate approximations for the rms density fluctua-
tion σ(M,a) for the cosmological parameters of the Bol-
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the matter dominated period (Ωm(a) ≈ 1, x < 0.3) to the
Λ-dominated one with x > 0.7. Approximations for the
halo concentration are presented in Figure 8 for some red-
shifts. The parameters A, b, c, d of the C(σ′) relation are de-
termined from the best fit to the concentration–σ(M) Bol-
shoi/MultiDark data at all redshifts.

Here is a step-by-step description how to estimate halo
concentration:

• For given mass M and a = 1/(1 + z) find x, D(a), and
σ(M,a) using eqs. (13, 12, 16 or 23)

• Use eq. (18) to find parameters B0 and B1.
• Use eqs. (15-16) to find σ′ and C
• Use eq. (14) to find halo concentration c(M, z).

We present the final results and approximations in two
different forms. Functions B0 and B1 can be used to find
values of C and σ′, which is effectively the same as rescal-
ing concentrations c(σ, x) measured in simulations to the

Figure 12. Halo mass–concentration relation of distinct halos at
different redshifts in the Bolshoi (open symbols) and MultiDark
(filled symbols) simulations is compared with analytical approxi-
mation eqs.(14-16 (curves)). The errors of the approximation are
less than a few percent.

same redshift z = 0. Figure 11 shows results of simulations
rescaled in this way. The U-shape of C(σ′) is clearly seen.
The C(σ′) function to some degree plays the same role for
concentrations as the function f(σ) for the mass function
in eqs.(3-4). It tells us that there is little evolution in the
dependence of concentration with mass once intrinsic scal-
ings (e.g., x instead of expansion parameter) are taken into
account.

Another way of showing the approximations is simply
plot eqs. (14-16) for different redshifts and compare the re-
sults with the median concentration - mass relation in our
simulations. This comparison is presented in Figure 12. It
shows that the errors of the approximation are just a few
percent for the whole span of masses and redshifts.

6 SUMMARY AND CONCLUSIONS

We study the halo concentrations in the ΛCDM cosmology,
from the present up to redshift ten, over a large range of
scales going from halos similar to those hosting dwarf galax-
ies to massive galaxy clusters, i.e. halo maximum circular
velocities ranging from 25 to 1800 km s−1 (about six orders
of magnitude in mass), using cosmological simulations with
high mass resolution over a large volume. The results pre-
sented in this paper are based on the Bolshoi, MultiDark,
and Millennium-I and II simulations. There is a good con-
sistency among the different simulation data sets despite
the different codes, numerical algorithms, and halo/subhalo
finders used in our analysis.

The approximations given here for the evolution of the
halo concentration constitute the state-of-the-art of our cur-
rent knowledge of this basic property of dark matter halos
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SUMMARY"

VP"

•  &CDM substructure key component for planning gamma-ray search 

strategies: 

–  Some of them excellent targets. 

–  Boost to the DM annihilation signal expected. 

•  Substructure boosts factors: 

–  Very sensitive to extrapolations below the mass resolution. 

–  Specially relevant for clusters; moderate values <50. 

–  O(10) for MW-sized halos. 

•  Halo concentrations: 

–  P12 c(M) model in remarkable agreement with N-body 

simulations at all halo masses. 

–  Power-law extrapolations to low masses clearly ruled out. 
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