the interplay of cosmic rays
&
gamma rays

tevpa august 2013

daniel castro - mit

outline

why is the connection between cosmic rays and gamma rays important?

what are the possible sources of galactic cosmic rays?

what have we learnt through recent research?

primer: cosmic rays -> gamma-rays

mechanisms through which cosmic rays produce gamma-rays

- inverse compton scattering
- non-thermal bremsstrahlung
- pion decay
- synchrotron

why is the connection between cosmic rays and gamma rays important?

- origin
- y-ray backgroun
- particle acceleration
- effect on source

- origin
- y-ray background
- particle acceleration
 effect on source

- origin
- y-ray background
- particle acceleration
- effect on source

- origin
- y-ray background
- particle acceleration
- effect on source

what are the possible sources of galactic cosmic rays? – role of gamma-rays

what are the possible sources of galactic cosmic rays? – role of gamma-rays

yoshinuki inoue – wed 9.30 – extragalactic gamma-ray review

- supernova remnants (snr)
- stellar winds
- colliding winds
- pulsar winds
- novae
- protostar jets

- supernova remnants (snr)
- stellar winds see walter binns talk mon 5.18
- colliding winds
- pulsar winds
- novae
- protostar jets

- supernova remnants
- stellar winds
- colliding winds
- pulsar winds
- novae
- protostar jets

- supernova remnan
- stellar winds
- colliding winds
- pulsar winds
- novae
- protostar jets

- supernova remnants (snr)
- stellar winds
- colliding winds
- pulsar winds b. rangelov wed 6.06 hess j1809-193
- novae
- protostar jets

- supernova remnants
- stellar winds
- colliding winds
- pulsar winds
- novae
- protostar jets

image: 3c 58 in x-rays - slane+ 2004

- supernova remnants
- stellar winds
- colliding winds
- pulsar winds
- novae
- protostar jets

rs oph at 5 ghz - rupen+ 2008

- supernova remnants
- stellar winds
- colliding winds
- pulsar winds
- novae V407 Cyg (abdo+ 2010)
- protostar jets

rs oph at 5 ghz - rupen+ 2008

hh80-81@6cm- carrasco-gonzalez + 2012

- supernova remnants
- stellar winds
- colliding winds
- pulsar winds
- novae
- protostar jets

ii. sources - snr

- non-thermal X-rays
- dynamical properties
- structure
- y-ray emission

ii. sources - snr

hinton & hofmann 2009 uchiyama+ 2002 aschenbach 1998 vink+ 2006 aharonian+ 2006, 2007,2008 naumann-godo+ 2006

ii. sources - snr

Table 1
SNRs Observed with the Fermi-LAT

	_		
Galactic			_
1(°)	b (°)	Name	Reference
6.4	-0.1	W28	Abdo et al. (2010a)
8.7	-0.1	W30	Castro & Slane (2010)
23.3	-0.3	W41	Castro et al. (2013a)
31.9	0.0	3C 391	Castro & Slane (2010)
33.6	0.1	Kes 79	Auchettl et al. (2013) ^a
34.7	-0.4	W44	Abdo et al. (2010c)
43.3	-0.2	W49b	Abdo et al. (2009)
49.2	-0.7	W51C	Abdo et al. (2009)
74.0	-8.5	Cygnus Loop	Katagiri et al. (2011)
78.2	2.1	γ -Cygni SNR	Lande et al. (2012)
89.0	4.7	HB 21	Reichardt et al. (2012)
109.1	-1.0	CTB 109	Castro et al. (2012)
111.7	-2.1	Cas A	Abdo et al. (2010b)
120.1	1.4	Tycho	Giordano et al. (2012)
180.0	-1.7	Š147	Katsuta et al. (2012)
189.1	3.0	IC443	Abdo et al. (2010d)
260.4	-3.4	Puppis A	Hewitt et al. (2012)
266.2	-1.2	Vela Jr.	Tanaka et al. (2011)
304.6	0.1	Kes 17	Wu et al. (2011)
337.0	-0.1	CTB 33	Castro et al. (2013a)
337.8	-0.1	Kes 41	Castro et al. (2013b) ^a
347.3	-0.5	RX J1713.7 3946	Abdo et al. (2011)
348.5	0.1	CTB 37A	Castro & Slane (2010)
349.7	-0.5	G349.7-0.5	Castro & Slane (2010)
357.7	-0.1	MSH 17-39	Castro et al. (2013a)

^a In preparation Interacting with MCs

iii. recent

what have we learnt through recent research?

iii. other talks

- farzaneh sheidaei today 2.00 veritas galactic
- christoph deil today 2.24 hess galactic
- denis leahy today 2.48 snrs in radio
- walter binns today 5.18 cr composition
- vladimir ptuskin tue 2.00 cr propagation (theory)
- terri brandt wed 8.30 galactic gev overview
- emma de ona wilhelmi wed 9.00 galactic tev overview
- ignacio taboada wed 10.00 hawc
- troy porter wed 11.00 cr propagation (observation)
- blagoy rangelov wed 6.06 hess j1809-193

iii. snrs

ackermann et al. 2013 (funk, tanaka, uchiyama)

iii. snr - molecular clouds

- castro et al. (2010,2013):
 - w30 + ctb 37a + g349.7-0.5 + 3c391
 - w41 + ctb 33 + msh 17-39
 - x-ray density $\ll \gamma$ -ray density

see also:

- uchiyama+ 2010 reacceleration
- inoue+ 2010 diffusion
- schuppan+ 2012 ionization

iii. snr - molecular clouds

iii. recent/upcoming instruments

- CTA more effective area, coverage to 10s of GeV (more SNRs + better sed) – see Dave Williams talk (today 11am)
- NuStar + Astro-H hard x-rays = constraints on sed
- Astro-H + Micro-X x-ray micro-calorimeters = detailed nature of shocked dense material
- ALMA possibly synchrotron continuum + ionized molecular material
- JWST synchrotron continuum? a lot more?

the end

iii. snr - molecular clouds

iii. molecular clouds

what happens when SNR shocks interact with dense clouds of material?

iii. magnetic field amplification

