Performance of the ARIANNA Neutrino Telescope

Corey Reed
UC Irvine

http://arianna.ps.uci.edu/

UHE Neutrinos

CRs have E>10¹⁸ eV

Origin?

No nearby sources known

Space too hazy for distant sources

UHE CRs \rightarrow UHE v's

Can arrive from far away

Not bent by magnetic fields

Imply hadrons at source

UHE Neutrinos

UHE v measurements could

Confirm GZK

Help describe CR sources

Evolution, Emax, CR composition

Reveal new sources

CR sources, EM hidden sources

And more!

v x-scn measurement

UHE Neutrinos

What kind of telescope?

BIG

Flux tiny, x-scn tiny

Cost efficient

So it can be big

Low background

Don't lose rare signal

ARIANNA

Detect v with radio

Radio pulse from hadronic shower

See Amy Connolly's talk Tue at 10am

Exploit properties of Ross Ice Shelf

All thanks to NSF!
MRI, OPP, MEP

Image from O.C. Register

ARIANNA

Sensitivity comparable to ARA

J. Hanson PhD Thesis, 2013. ARA-37 from Astroparticle Physics, 35:457-477, 2012

Flux Sensitivity

ARIANNA

30 km² grid 3 yrs (shown)

"low" E thresh

Expect ~40 v/yr from reasonable models

J. Hanson, PhD Dissertation, 2013. Half-decade E bins. Fig. adapted from Kampert & Unger

4 LPDA Antennae

Log Periodic Dipole Array

Local DAQ

1.92 Giga-samples/sec

Local power

Solar

Wind

Li Batteries

Station needs ≤10 watts

Data From Site

Stations taking data

Simple trigger:

1+ sample high on 2+ antennae

Mix in min-bias

Jan 16, 2013 at 13:57:06 UTC. NW station. N channel.

Data From Site

Environment is radio quiet

White noise from amps is Gaussian

NW station (3). N channel.

Data From Site

Rates low with reasonable thresholds

System can go much faster (>100's Hz)

Send a very short pulse down

Measure reflection with station

Align recorded pulses by shifting in time

Require delays to be consistent with plane wave Inherent angular precision ~0.16°

First look at 2012-2013 data

Look at waveforms in frequency domain

Take pulser as reasonable signal reference

Reject events with freq profiles far from signal

- X lots of power at low freq
- x strong peak at higher freq
- x parallel antennae have very different low freq power

Excellent rejection - before timing or reco cuts!

Could we see CRs?

Currently under study

Antenna response, time domain signals

See talk by Jordan Hanson after this!

Could be interesting background!

Many ways to separate from signal

Power down by 10db at back of LPDA

CR vertical, v horizontal

Freq spectrum different

Completing R&D

Next step for HRA

Sweden + USA

U. Uppsala

Winter power R&D Further DAQ R&D

Potential to observe v

Summary

New stations installed Dec 2012

Took data and communicated until end of May

RF quiet environment

Excellent angular precision

Background rejection straight forward

Proposal for full ARIANNA in the works!

960 station v telescope

Environment

RF quiet & stable

NW station. N channel.

NW station. Minbias events.

Rate Fluctuations

DAQ sensitive to temperature

Put station on roof

No antennae

Trigger 2/2 channels

Amp noise

Doesn't affect v sens!

No significant dead time

Can reduce with trigger

High + low thresholds

Origin of background?

Wind gen in strong winds

Increases power, but not rates!

Power at very low frequencies

Rare transients in summer

Dur. ~hour

Thermal noise of amps

Trivial

Models

Model and Reference	Model Class	Predicted N_{ν}
ESS Fig. 4 $(\nu_e + \nu_\mu)$ [71]	No source evo.	30.8
Kotera (2010) Fig. 1 [33]	SFR1, Pure Proton	37.1
ESS Fig. 9 [71]	Strong evo.	104.9
Kalashev Fig. 2 [69]	High $E_{max}, z \leq 2$	96.1
Barger Fig. 2 [42]	Strong evo.	114.9
Yuksel, Kistler (2007) [53]	SFR evo.	45.4
Yuksel, Kistler (2007) [53]	QSO evo.	55.5
Yuksel, Kistler (2007) [53]	GRB evo.	156.1
Ave et al. (2005) [24]	Pure Fe comp.	11.3
Todor Stanev [80]	Fe, CMB+IRB	2.40
Kotera Fig. 7 upper [33]	Mixed comp.	21.7
Kotera Fig. 7 lower [33]	Pure Fe	7.50
Fermi-LAT [22]	$E_{cross} = 10^{17.5} \text{ eV}$	15.5
Fermi-LAT [22]	$E_{cross} = 10^{18.0} \text{ eV}$	21.1
Fermi-LAT [22]	$E_{cross} = 10^{18.5} \text{ eV}$	32.9
Fermi-LAT [22]	$E_{cross} = 10^{19.0} \text{ eV}$	42.8
WB (1999) [17]	No source evo.	22.4
WB (1999) [17]	QSO evo.	67.1
Olinto review (2011) [23]	Fe, $E_{max} = 100 \text{ EeV}$	0.14
Olinto review (2011)	Mixed, $E_{max} = 10 \text{ EeV}$	0.068
Olinto review (2011)	Proton, $E_{max} = 3 \text{ ZeV}$	101.3
Olinto review (2011)	Various protonic, SFR	37.1

J. Hanson, PhD Dissertation, 2013

Ice Properties

Frequency (MHz)

Costs

Should wait for proposal

Design plan (& costs) changing frequently

Hardware ~ 10k / station

Personnel

Logistics (3 yr install)

~ \$9.6 M

~ \$10 M

~ \$5 M

Cosmic Ray Spectrum

Neutrino Detection

K. Dookayka, UCI PhD dissertation, 2011

Neutrino Detection

K. Dookayka, UCI PhD dissertation, 2011