Performance of the ARIANNA
Neutrino Telescope

Corey Reed

UC Irvine

http://arianna.ps.uci.edu/



UHE Neutrinos

CRs have E>10"18 eV

Origin?
No nearby sources known
Space too hazy for distant sources

UHE CRs —» UHE v's

Can arrive from far away
Not bent by magnetic fields
Imply hadrons at source



UHE Neutrinos

UHE v measurements could

Confirm GZK
Help describe CR sources

Evolution, Emax, CR composition
Reveal new sources

CR sources, EM hidden sources
And more!

V X-SCn measurement



UHE Neutrinos

What kind of telescope?
BIG

Flux tiny, x-scn tiny

Cost efficient
So it can be big

Low background

Don't lose rare signal



ARIANNA

' ' Counting neutrinos & :
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ARIANNA

Sensitivity comparable to ARA
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J. Hanson PhD Thesis, 2013. ARA-37 from Astroparticle Physics, 35:457-477, 2012



Flux Sensitivity

ARIANNA
30 km? grid
3 yrs (shown)
“low” E thresh

Expect ~40 v/yr
from reasonable
models
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J. Hanson, PhD Dissertation, 2013. Half-decade E bins.
Fig. adapted from Kampert & Unger




UHE Nu ARIANNA HRA Data Signal Background

ARIANNA HRA Stations

4 LPDA Antennae
Log Periodic Dipole Array

08.26.13 TeV Particle Astrophysics 8



HRA

ARIANNA HRA Stations

Local DAQ
1.92 Giga-samples/sec
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HRA

ARIANNA HRA Stations
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Arianna

Map created at GPSVisualizer.com




HRA

ARIANNA HRA Stations
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lridium Satellite

Map created at GPSVisualizer.com




HRA

ARIANNA HRA Stations

Local power

Solar

Wind

L1 Batteries

Station needs <10 watts v ARIANNA
¥ Towers




Data From Site

Stations taking data

Simple trigger:

1+ sample high
on 2+ antennae

Mix in min-bias

Ped. subtracted waveform (chan 0, event 82)
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Jan 16, 2013 at 13:57:06 UTC. NW station. N channel.



Data From Site

Environment is radio quiet

White noise from amps is Gaussian

M Minbias
(0=21.5)
M Thermal
(0=24.5)
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NW station (3). N channel.




Data From Site

Rates low with reasonable thresholds

System can go much faster (>100's Hz)
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Signal Studies

Send a very short pulse down

Measure reflection with station




Signal

Signal Studies




Signal Studies

Align recorded pulses by shifting in time

Ndd4-00aVv
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Signal Studies

Require delays to be consistent with plane wave

Inherent angular precision ~0.16°




Background Studies

First look at 2012-2013 data

Look at waveforms in frequency domain

Take pulser as reasonable signal reference

Reject events with freq profiles far from signal

A lots of power at low freq
N strong peak at higher freq
)¢ parallel antennae have very different low freq power



Background Studies

Excellent rejection - before timing or reco cuts!
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Background Studies

Could we see CRs?
Currently under study

Antenna response,
time domain signals

See talk by Jordan Hanson after this!
Could be interesting background!

Many ways to separate from signal

Power down by 10db at back of LPDA

CR vertical, v horizontal
Freq spectrum different



Completing R&D

Next step for HRA

Sweden + USA
U. Uppsala
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Winter power R&D
Further DAQ R&D

165.1 165.2

Potential to observe v longitude




Summary

New stations installed Dec 2012

Took data and communicated until end of May
RF quiet environment

Excellent angular precision

Background rejection straight forward

Proposal for full ARIANNA in the works!

960 station v telescope



ARIANNA Background

TeV Particle Astrophysics



Environment

RF quiet & stable

M Minbias
(0=21.5)
M Thermal
(0=24.5)
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Rate Fluctuations

DAQ sensitive to temperature

Put station on roof Temperature vs Number of Events

(C)

No antennae
Trigger 2/2 channels

Amp noise
Doesn't affect v sens!
No significant dead time
Can reduce with trigger
High + low thresholds

Temperature
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Background Studies

Origin of background?

Wind gen in strong winds

Increases power, but not rates!
Power at very low frequencies

Rare transients in summer
Dur. ~hour
Thermal noise of amps

Trivial



Models

Model and Reference Model Class Predicted N, |
ESS Fig. 4 (v, +v,) [71] No source evo. - 308 |
Kotera (2010) Fig. 1 [33] | SFRI, Pure Proton | 371 |

ESS Fig. 9 [71] Strong evo. 1049 |
Kalashev Fig. 2 [69] High Epaz, 2<2 | 961 |
Barger Fig. 2 [42] Strong evo. 1149 |
Yuksel, Kistler (2007) [53] SFR evo. 454 |
Yuksel, Kistler (2007) [53] QSO evo. . 555 |
Yuksel, Kistler (2007) [53] | GRB evo. 156.1
Ave et al. (2005) [24] Pure Fe comp. 11.3 ‘

Todor Stanev [80] Fe, CMB+IRB 240 |

Kotera Fig. 7 upper [33] Mixed comp. - 2LT |

Kotera Fig. 7 lower [33] Pure Fe 750 |

Fermi-LAT [22] eross = 1007 eV | 155 |

Fermi-LAT [22] eross = 10080 eV | 211 |

Fermi-LAT [22]  erass 05 eV | 329 |
10190 g\

Fermi-LAT [22] o oss |
WB (1999) [17] No source evo. 22.4
J. Hanson, WB (1999) [17] ' QSO evo.
PhD Dissertation, 2013 Olinto review (2011) [23] | Fe, Epaz = 100 EeV

Olinto review (2011) Mixed, Emna: = 10 EeV 0.068 |

Olinto review (2011) Proton, E., =3ZeV | 1013 |
Olinto review (2011) Various protonic, SFR | 371 |




Attenuation Length (m)

lce Properties

—=— 2011 Data
— linear
= = = 2006 Data (fit)
2006 Data (Yagi)
&— 2006 Data (Seavey)
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Costs

Should wait for proposal
Design plan (& costs) changing frequently

Hardware -~ 10k / station ~S9.6 M
Personnel ~S10M
Logistics (3 yr install) ~S5M
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Cosmic Ray Spectrum
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Neutrino Detection

allv ﬂa\rmif
= 3ll 2vent types

direct events

lected events
event types (no v_ effect)

all events

20

: 6y - 6, (deg)
04 02 0

K. Dookayka, UCI PhD dissertation, 2011



Neutrino Detection
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K. Dookayka, UCI PhD dissertation, 2011
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