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Outline
● How we plan to detect high-energy neutrinos via the Askaryan effect
● Conversion of analytical electric fields to voltage waveforms in ARIANNA 

DAQ (LTI systems)
● Anechoic Chamber measurements performed at the University of Kansas

– Experimental Setups (4)
– Types of data taken (scalar versus frequency, time-domain waveforms)

● Calculation of  effective height operator of the signal antenna

– The best-fit effective height operator
– Including the AC-coupled low-noise amplifier (LNA)
– Checking off-axis

● Deriving template waveform induced by neutrino interaction in ice
● Future work
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High Energy Cosmic Ray Spectral Cutoff (GZK effect)

Nucleon-photon 
threshold effect 
which produces 
secondary 
particles, including 
neutrinos

What is the precise 
origin of these 
particles?

How heavy are 
they (are they 
mostly protons, or 
heavier)?

How does a 
neutrino interact 
with matter at 
COM energy of 
100 TeV?

pCR
+ +γCMB →Δ + → p++π 0 → p++2 γ

pCR
+ +γ2.7 K →Δ + →n0+π + →n0+μ++νμ→n0+e++νe+νμ+ν̄μ
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Statement of the Problem

Properties of the detector and first neutrino-event 
search:  J.C. Hanson. “The Performance and Initial 
Results of the ARIANNA Prototype.” PhD 
Dissertation. (2013)

Firn and Ice

Measure V(t)
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Statement of the Problem, II: the signal to detect
Spectrum of electric field from 1 PeV shower in 
ice

Spectrum+time-domain of 3 EeV shower in 
ice.

Search: 1 GHz bandwidth, several hundred V/m 
electric field pulse traveling ~ 1 km through ice

Alvarez-Muniz, 
Romero-Wolf, 
Zaz. (2010)

Alvarez-Muniz, 
Romero-Wolf, 
Zaz. (2011)
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The signal antenna: Log-Periodic Dipole Array

Example of a frequency-independent antenna (bandwidth of 100-1300 
MHz)

Radiation pattern is maximal in direction of bore-sight.  The bore-sight 
configuration (shown above) optimizes reception.

Linearly polarized.  The E-plane is the plane containing the dipole 
elements, the H-plane is perpendicular to E-plane, containing only the 
spine of the antenna
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Linear Time-Invariant System
● Two property system with single input x(t), single output y(t)

– Linearity: ax1(t)+bx2(t) = ay(t)+by(t)

– Time-invariance: ax(t-T) = ay(t-T)

– The convolution integral with kernel r satisfies these two 
criteria

● Convolution: 

● Specifically, for antennas, let y(t) = V(t), the time-dependent 
voltage.  Taking r = h(t), the effective height, we have:

y (t )=∫
−∞

∞

r (τ) x (t−τ)d τ

V (t )=∫
−∞

∞

h⃗ (τ)⋅⃗E (t−τ)d τ
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Experimental Setup: The Anechoic Chamber



  

Experimental Setup: scalar LPDA properties (e.g. bandwidth)

Scope

Network
Analyzer

DC
Power

DC
Power

Agilent 20 MHz
Signal gen.

Avtech
pulser

LMR-400 (5m)

LMR-600 (10m)

SMA MicroCoax (10m)

RF Chamber 
wall

5.
7 

m

Attempting to be 
in the LPDA 
far-field

Network analyzer 
measures 
reflection and 
scattering 
parameters vs. 
frequency

Cable attenuation 
is minimized 
(subsequent slides)

Other equipment 
used in 
subsequent 
measurements



  

Main Result #1: Checking the SWR

Reception bandwidth > 1 GHz
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Scope

Network
Analyzer

DC
Power

DC
Power

Agilent 20 MHz
Signal gen.

Avtech
pulser

RX
TRX

LMR-400 (5m)

LMR-600 (10m)

SMA MicroCoax (10m)

RF Chamber 
wall

5.
7 

m
LMR-400 (10 ft)

SMA MicroCoax (5 ft)

Experimental Setup: 3D radiation pattern, gain

Measured the full 
radiation pattern 
vs. frequency, 
azimuth, and 
zenith angles.

Achieved 73% 
coverage of the 
unit sphere 
(limited in zenith 
angle by the 
mounting stock in 
the chamber)
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Main Result #2: Radiation 
Pattern



  

Experimental Setup: impulse response



  

Derivation of effective height using this experimental setup:
r = antenna separation, 
c = light speed, 
V

L
 = antenna voltage delivered to load, 

Z
L
 = load resistance (and coaxial line resistance, 50 Ohms), 

Z
in
 = antenna input resistance (~50 Ohms), 

Z
0
 = impedance of free space (120π Ohms)

V L (t )=2 ( Z L

Z L+Z in
) h⃗rx ( t )∘ E⃗ (t )

E⃗ ( t )=
2

4π r c ( Z in

Z in+Z L
) Z 0

Z in

h⃗tx ∘V src ( t )

V L (t )=
1

(2π r c)

Z 0

Z L

h⃗rx (t )∘ h⃗rx ( t )∘∂t V src (t ) ( h⃗tx=−2∂t h⃗rx (t ))

(c.f. P. Miocinonic, 2006)
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Avtech (pulser) signal Reception bandwidth > 1 GHz
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Time-domain Results: raw, bore-sight 
case

Left: Bore-sight signal data.

Right: Spectrogram of the data on the left; magnitude of the 
short-time Fourier transform in dB (color scale).
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Method for Obtaining h
rx

(t)

● Rotating to Fourier domain and back amplifies noise

● Assume a trial function with parameters, a(t) chosen to turn 
on/off the function

● Perform a fit that minimizes R after scanning the full 
parameter space

R=
1
N

∑
i

N

( f data (t i )−f model (t i))
2

hrx (t )=Aa (t )cos (2π k ln ( t /t end))

a( t )=(2 / π )
2 tan−1

( t /t 0) tan−1
(−( t−tend )/ t1)
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Main Result #3: Bore-sight h
rx

(t)

Height corresponds 
to the length of the 
antenna
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Main Result #3: Bore-sight h
rx

(t)



  

V L(t)=
1

(2π r c)

Z0

Z L

H amp(t)∘ h⃗rx(t)∘ h⃗rx(t)∘∂t V src (t )

Main Result #4: Bore-sight h
rx

(t) w/ Amplifier

Credit: James 
Walker and Steve 
Barwick, UCI
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Main Result #4: Bore-sight h
rx

(t) w/ Amplifier

Correct amplitude and width
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Comparing Effective Height to Others' Results

LPDA has different shape 
parameters but scales with size

Note: data from this reference has been scaled to match LPDA sizes.



  

Checking off-axis: 60 degrees in E-plane

Effective height: Similar height at late times and lower frequencies, but frequency 
modes above 600 MHz are missing (early times).

Reconstruction: Early times (500-600 MHz) are large, but excellent match after 15 
ns.  The overall signal is much longer.
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Interactions with Askaryan Electric Fields, 
Comparisons with Monte Carlo simulation

● Electric field strength typically parameterized from data, with respect to energy 
and frequency (Saltzberg et al., 2000), (Alvarez-Munis et al., 2010)

● Observed strength depends on viewing-angle with respect to Cherenkov angle

● Propagation and attenuation (lambda = attenuation length)

● Signal voltage depends on viewing angle of the antenna

E1m=
2.53×10−7 E v [TeV ](v /v0)

1+(v /v0)
1.44 (V m−1 MHz−1

)

E1m (θν )=E1m

sin (θ ν)

sin (θC )
exp (−ln 2 ((θν−θC )/ Δ θ)2 ) (V m−1 MHz−1)

V LPDA=P(θν)
Δ v

√2
sinθν

sinθC

exp
−r /λ

r
∑

i

E1m(θν)heff (v i)
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Main Result #5: Comparing Monte Carlo with 
Time-Domain Calculation



  

Conclusion

● Discussed UHE neutrinos, the Askaryan Effect
● Mathematics of converting electric field waveform to 

voltage waveform
● Measured antenna properties, including conversion 

from E-field to voltage waveform
● Demonstrated angular monte carlo agreement, and 

computed neutrino waveforms entering ARIANNA 
DAQ.

● Future work: must span the angular space to 
generalize the fits, improve high-frequency agreement
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Backup slides



  

E-Plane beam-width ~ 60 degrees
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Front-Back Ratio ~ -15 dB
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Gain vs. Frequency
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