
Analysis of the High-Energy Starting Events in IceCube
Some more details on the analysis
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Interesting Neutrinos above 1 TeV

‣ Atmospheric neutrinos 
(π/K)
• dominant < 100 TeV

‣ Atmospheric neutrinos 
(charm)
• “prompt” ~ 100 TeV

‣ Astrophysical neutrinos
• maybe dominant > 100 

TeV
‣ Cosmogenic neutrinos
• >106 TeV
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Neutrinos are detected by looking for Cherenkov radiation from 
secondary particles (muons, particle showers)

The IceCube Neutrino Observatory
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Signatures of  signal events
Neutrino Event Signatures
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CC Muon Neutrino Neutral Current /
Electron Neutrino CC Tau Neutrino

track (data)

factor of  ≈ 2 energy resolution
< 1° angular resolution

cascade (data)

≈ ±15% deposited energy resolution
≈ 10° angular resolution
(at energies ≈ 100 TeV)

“double-bang” and other 
signatures (simulation)

(not observed yet)
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Backgrounds and Systematics

‣ Backgrounds:
• Cosmic Ray Muons

• Atmospheric Neutrinos

‣ Largest Uncertainties:
• Optical Properties of  Ice

• Energy Scale Calibration

• Neutral current / νe degeneracy
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A bundle of muons from a CR interaction in 
the atmosphere

(also observed in the “IceTop” surface array)



Light propagation is dominated by scattering
Muon Track in Ice
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time delay
vs. direct light

“on time” delayed



Shower directions reconstructed from timing profile
Shower in Ice
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time delay
vs. direct light

“on time” delayed



Appearance of  ~1 PeV cascades as an at-threshold background
Results

‣ Two very interesting events in IceCube 
(between May 2010 and May 2012)
• shown at Neutrino ’12

• 2.8σ excess over expected background in 
GZK analysis

• paper submitted and on arXiv
(arXiv:1304.5356)

‣ There should be more
• GZK analysis is only sensitive to very 

specific event topologies at these energies
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“Ernie”~1.2PeV

“Bert”~1.1PeV



Generic full-sky likelihood scan for each event (works with shower 
and track signatures)

Event Reconstruction
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‣ Fits for deposited energy along a “track” in each skymap direction 
based on hit pattern using a detailed model of the glacial ice optical 
properties

‣ Result: direction with uncertainty and estimate for deposited energy
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Spice1

4171.42 27188.3logl (ndof=5365)

4.17e+03 4.67e+03

SpiceMie

4347.26 27345.6logl (ndof=5365)

4.35e+03 4.85e+03

Dr. Strangepork

IceCube
Preliminary

IceCube
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Event Reconstruction
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Statistical uncertainties in angular reconstruction for showers is 
small. Dominated by ice systematics!

11

Directional Resolution for ShowersAngular Resolution

N. Whitehorn, UW Madison IPA 2013 - 34

IceCube Preliminary

plot shows statistical error only
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Directional Resolution for Showers
resolution for an individual exam

ple event from
 re-sim

ulation

21

Zenith Resolution for Showers

Preliminary

resolution for an individual event from
 re-sim

ulation

‣ Angular error 
distributions on the 
order of 10°-15° 
depending on the 
ice model 
assumption
• two ice examples 

are shown

• aggregate 
resolution in black



Specifically designed to find these contained events. Analysis of  
dataset taken from May 2010 to May 2012 (662 days of  livetime)

‣ Explicit contained search at high 
energies (cut: Qtot>6000)

‣ 400 Mton effective fiducial mass

‣ Use atmospheric muon veto

‣ Sensitive to all flavors in region 
above 60TeV

‣ Three times as sensitive at 1 PeV

‣ Estimate background from data
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Contained Event Analysis
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Mostly incoming atmospheric muons sneaking in through the main 
dust layer

Background 1 - Atmospheric Muons

‣ Reject incoming muons when “early charge” in veto region
‣ Control sample available: tag muons with part of the 

detector - known bkg.
‣ 6±3.4 muons per 2 years (662 days)
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What’s “early charge”?
Background 1 - Atmospheric Muons
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Use known background from atmospheric muons tagged in an outer 
layer to estimate the veto efficiency

Estimating Muon Background From Data
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‣ Add one layer of DOMs on the 
outside to tag known 
background events
• Then use these events to 

evaluate the veto efficiency

‣ Avoids systematics from  
simulation assumptions/
models!

‣ Can be validated at charges 
below a cut (6000 p.e.) where 
background dominates

μ Veto Tagging Region



 
Vetoing Atmospheric Neutrinos

‣ Atmospheric neutrinos are made 
in air showers

‣ For downgoing neutrinos, the 
muons will likely not have 
ranged out at IceCube

‣ Downgoing events that start in 
the detector are extremely 
unlikely to be atmospheric
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Schönert et al.,
arXiv:0812.4308

• Note: optimal use requires minimal overburden to have the 
highest possible rate of  cosmic ray muons!



 
Vetoing Atmospheric Neutrinos

‣ conservative assumption: always allow a 10% chance in 
calculations that event will not be vetoed
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Differences at low energies between the flavors due to leaving events 
at constant charge threshold

Effective Area
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Fully efficient above 100 TeV for CC electron neutrinos
About 400 Mton effective target mass

Effective Volume / Target Mass
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IceCube Preliminary
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26 more events in the 2 years of  IceCube data (2010/2011 season: 
“IC79”&“IC86”)

What Did We Find?

‣ 28 events observed!
• 26 new events in addition to 

the two 1 PeV events!
‣ Track events (x) can have 

much higher neutrino 
energies than deposited 
energies
• also true on a smaller scale for 

shower events for all signatures 
except charged-current νe

‣ Background: 10.6+5.0-3.6
• (or 12.1±3.4 for reference 

neutrino background model)
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(preliminary significance w.r.t. 
reference bkg. model: 3.3σ for 26 

events; 4σ for 28 events)



Uniform in fiducial volume
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Event Distribution in Detector
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Uniform in fiducial volume
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Event Distribution in Detector
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Uniform in fiducial volume
Event Distribution in Detector
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‣ Backgrounds from 
atm. muons would 
pile up  
preferentially at 
the detector 
boundary

‣ No such effect is 
observed!
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Systematic Studies and Cross-Checks

‣ Systematics were checked 
using an extensive per-
event re-simulation
• varied the ice model and 

energy scale within 
uncertainties for each 
iteration and repeated 
analysis

‣ Different fit methods 
applied to the events show 
consistent results
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‣ Tracks:
• good angular resolution 

(<1deg)
• inherently worse resolution 

on energy due to leaving 
muon

‣ Showers:
• larger uncertainties on angle 

(about 10°-15°)
• good resolution on deposited 

energy
(might not be total energy 
for NC and ντ)



Cross-check with a fit method based on direct re-simulation of  
events

Systematic Studies and Cross-Checks

‣ Second fit method based on 
continuous re-simulation of events
• Can include ice systematics like 

directional anisotropy in the scattering 
angle distribution and tilted dust 
layers directly in the fit!

• Very slow, works for shower-like events
‣ Shown: comparison with other 

method
‣ Within these known bounds: all 

results are compatible to within 10%
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IceCube Preliminary

 
Charge Distribution with Muon Bkg.

‣ Fits well to tagged 
background estimate from 
atmospheric muon data 
(red) below charge 
threshold (Qtot>6000)

‣ Hatched region includes 
uncertainties from 
conventional and charm 
atmospheric neutrino flux 
(blue)

27

muon bkg.
estimated
from data



IceCube Preliminary

Compatible with benchmark E-2 astrophysical model
Energy Spectrum

‣ Harder than any expected 
atmospheric background

‣ Merges well into background 
at low energies

‣ Potential cutoff at about 2-5 
PeV
• at 1.6+1.5-0.4 PeV when fitting a 

hard cutoff

‣ Best fit (assuming 1:1:1):
• 1.2±0.4 10-8 GeV-1 cm-2 s-1 sr-1 

28



No prior on charm, E-2 fit between 60 TeV < E < 2 PeV
Global fit using 28 events
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Fluxes normalized to 3 flavors except atm. neutrinos
Fluxes and Limits
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IceCube Preliminary

Or: “Zenith Distribution” because we are at the South Pole
Declination Distribution

‣ Compatible with isotropic 
flux

‣ Events absorbed in Earth 
from Northern 
Hemisphere

‣ Minor excess in south 
compared to isotropic, but 
not significant
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The Future

‣ Improvements of the method, like:
• dynamic veto “thickness” as a function of  charge
• enhancements of  the detector (top veto, 

additional strings, ...)??

‣ Take more data with IceCube!
• one more year of  data is being analyzed

‣ Publication coming very soon!

32


