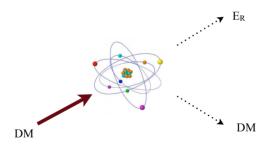
The Effect of Gravitational Focusing on Annual Modulation

Mariangela Lisanti

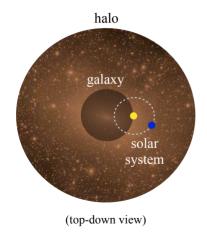

Princeton Center for Theoretical Science

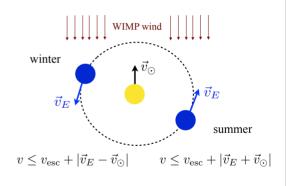
in collaboration with Samuel Lee, Annika Peter, Benjamin Safdi [1307.5323, 1308.1953]

Direct Detection

Dark matter scatters off of nuclei in detectors

Measure recoil energy of nuclei

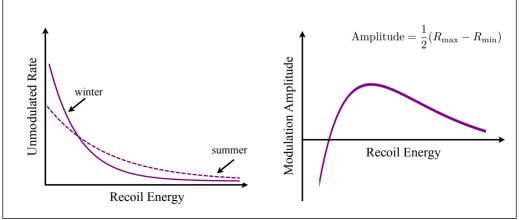



Direct Detection

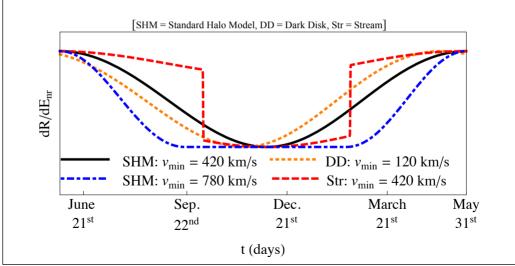
RAVE star survey
$$v_{
m esc} = [498,608] \
m km/s$$
 Astrophysical Input $\frac{1}{E_R} \propto \int_{v_{
m min}}^{v_{
m esc}} d^3v \ \frac{d\sigma}{dE_R} \ v \ f(v)$ Scattering kinematics Model parameters

Annual Modulation

Dark matter signal modulates annually due to Earth's orbit about the Sun



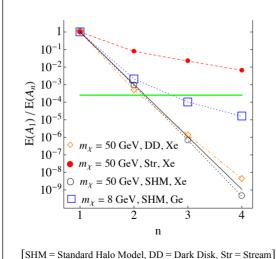
Annual Modulation


More high-velocity particles in the summer, than the winter

High-energy scattering events have a maximum ~June 1 Low-energy events have a maximum ~Dec 1

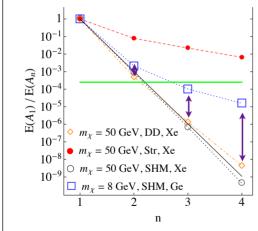
Modulation Spectrum

Shape of the modulation spectrum depends on assumptions about the particle and astrophysics properties


Expand differential scattering rate in terms of Fourier components

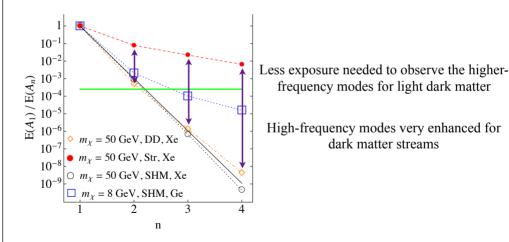
$$\frac{dR}{dE_{\rm nr}} = A_0 + \sum_{n=1}^{\infty} \left[A_n \cos n\omega (t - t_0) + B_n \sin n\omega (t - t_0) \right]$$

Relative strength of higher Fourier modes enhanced for


- high v_{min} scenarios (i.e., light or inelastic DM)
 - local DM substructure in the halo

 $E(A_1)/E(A_n) = \begin{array}{l} \text{Exposure needed to observe A}_1 \text{ to 95\%} \\ \text{confidence, relative to that for A}_n \end{array}$

rk Disk, Str = Stream]


$$E(A_1)/E(A_n) =$$
Exposure needed to observe A₁ to 95% confidence, relative to that for A_n

Less exposure needed to observe the higherfrequency modes for light dark matter

[SHM = Standard Halo Model, DD = Dark Disk, Str = Stream]

$$E(A_1)/E(A_n) =$$
Exposure needed to observe A₁ to 95% confidence, relative to that for A_n

High-frequency modes very enhanced for dark matter streams

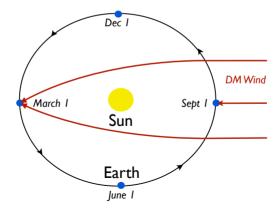
frequency modes for light dark matter

[SHM = Standard Halo Model, DD = Dark Disk, Str = Stream]

Predicted amount of time to observe higher-harmonic modes for CDMS-Si best-fit point

 $m_{\chi} = 8.6 \text{ GeV}, \sigma_0 = 1.9 \times 10^{-41}$

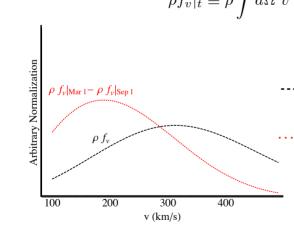
Mode	XENON1T	GEODM DUSEL	GEODM DUSEL	
	$E_{ m thresh}$: 4 keV $_{ m nr}$	$5~{ m keV_{nr}}$	$2~{ m keV_{nr}}$	
A_1	$\leq 1 \text{ year}$	$\leq 1 \text{ year}$	$\leq 1 \text{ year}$	
$egin{array}{c} A_1 \ A_2 \end{array}$	$\leq 1 \text{ year}$	$\leq 1 \text{ year}$	$\leq 1 \text{ year}$	
B_1	-	-	1 - 2 years	
B_2	-	-	-	
A_d	-	-	2 - 3 years	


Gravitational focusing of dark matter particles affects B₁ mode (modulation phase)

A particular example:

Gravitational Focusing

Sun's potential deflects incoming, unbound dark matter particles


Focusing effect is strongest during the Spring

Phase-Space Density

Define phase-space density in the lab frame at time *t* to be

$$\rho f_v|_t \equiv \rho \int d\Omega \ v^2 f(\mathbf{v}, t)$$

Phase-space density peaked at v \sim 300 km/s Difference in phase-space density between spring and fall, peaked at v \sim 200 km/s

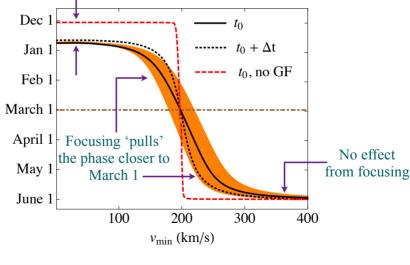
Modulation Phase

Earth's orbit causes ~3% modulation that is extremized ~June 1

Focusing causes ~1.5% modulation that is peaked ~March 1

$$v_{
m min} \gtrsim 200 \; {
m km/s}$$
 Modulation due to Earth's orbit dominates

 $v_{\rm min} \sim 200 \text{ km/s}$ Gravitational focusing starts to become important


 $v_{\rm min} \lesssim 200 \text{ km/s}$ Focusing causes phase to shift towards March 1

Shift due to higher-frequency modes $\frac{dR}{dE_{\rm nr}} \approx A_0 + A_1 \cos \omega (t - t_0 - \Delta t)$

Modulation Phase

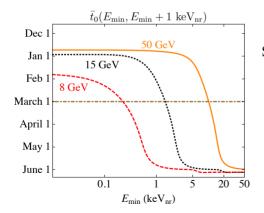
$$\frac{dR}{dE_{\rm nr}} \approx A_0 + A_1 \cos \omega (t - t_0 - \Delta t)$$

Experimental Implications

Minimum scattering velocity depends on the mass of the dark matter, as well as the target nucleus

Mass of target nucleus

$$v_{\min} = \sqrt{\frac{m_n E_{\mathrm{nr}}}{2\mu^2}} \leftarrow \frac{\text{Recoil energy}}{\text{of nucleus}}$$
Reduced mass of nucleus and dark matter


Lower v_{min} for heavier dark matter

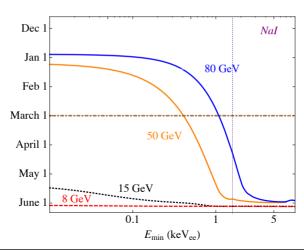
Lower v_{min} for lighter dark matter at lower recoil energy

Example: Ge Target

For current thresholds, phase shift particularly significant for masses greater than ${\sim}15~\text{GeV}$

Current advances in low-threshold technology could make shift relevant for ~8 GeV dark matter

Scattering rate in finite energy bin:


$$\bar{R}(E_{\rm min}, E_{\rm max}) = \int_{E_{\rm min}}^{E_{\rm max}} dE_{\rm nr} \frac{dR}{dE_{\rm nr}}$$

 $ar{t}_0$ is the time of maximal $ar{R}$

DAMA

NaI(Tl) target, claims 9.3σ modulation

Can correspond to ${\sim}10$ or 80~GeV dark matter Both in tension with null results from other experiments

DAMA

80 GeV scenario affected by gravitational focusing

The phase shift can be as much as a ~month in the low-energy bins

	2-2.5 keV _{ee}	2-3 keV _{ee}	2-4 keV _{ee}	2-5 keV _{ee}	2-6 keV _{ee}
DAMA, measured	?	?	May 12±7	May 22±7	May 26±7
80 GeV (w/GF)	April 29	May 10	May 19	May 21	May 22

Gravitational focusing results in a dependence of phase on recoil energy bin

Can be used to distinguish signal from background

Conclusions

Particle and astrophysics assumptions about dark matter can enhance higher-frequency modes of modulation spectrum

Unbound dark matter particles focused by Sun's gravitational potential, affecting the modulation phase

Phase shift most relevant for low- v_{min} particles i.e., masses greater than $\sim\!15$ GeV, or lighter mass particles at low-threshold experiments