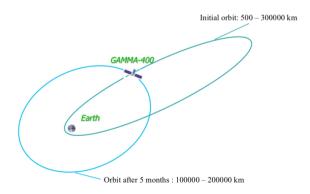
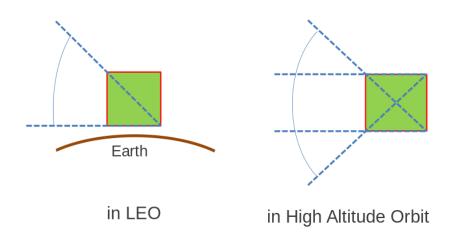


Cosmic ray physics with the GAMMA-400 experiment

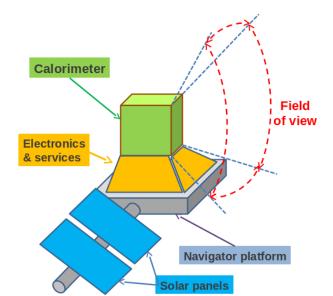
P. Cumani (University of Trieste - INFN Sez. di Trieste) on the behalf of the GAMMA-400 collaboration



Cooperation in the design and production of scientific equipment

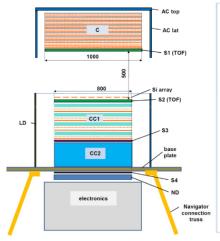

Russian scientific organizations	Foreign scientific organizations
LPI RAS — main collaborator	INFN (Italy) — stripped detector and calorimeter
NRNU MEPhI — detectors	INAF (Italy) — stripped detector
NIIEM — design, temperature control system	Taras Schevchenko National University (Ukraine) — Ukrainian main collaborator
NIISI RAS — electronics	CrAO (Ukraine) — ground-based observations
loffe Institute — Konus-FG burst monitor	IKI (Ukraine) — magnetometer
IKI — star sensor	ISM (Ukraine) — scintillators
IHEP — calorimeters, scintillators	KTH (Sweden) — anticoincidence
TsNIIMASH — space qualification	

- Mission approved by ROSCOSMOS (launch currently schedule by November 2018)
- GAMMA-400 will be installed onboard the platform
 "Navigator" manufactured by Lavochkin
- Scientific payload mass: 2600 kg
 - Power budget: 2000 W
 - Telemetry downlink capability: 100 GB/day
 - Lifetime: 10 years


Space mission GAMMA-400

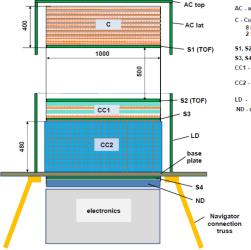
Acceptance of the Calorimeter (Side view)

Acceptance of the Calorimeter


Original Russian design focused on:

- High energy gamma-rays (10 GeV 3 TeV)
- High energy electrons (e⁻ and e⁺) up to TeV energies

Scientific objectives (from Russian proposal):


- "To study the nature and features of weakly interacting massive particles, from which the dark matter consists"
- "To study the nature and features of variable gamma-ray activity of astrophysical objects from stars to galactic clusters"
- "To study the mechanisms of generation, acceleration, propagation and interaction of cosmic rays in galactic and intergalactic spaces"

GAMMA-400 baseline

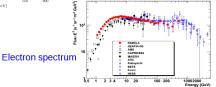

```
AC - anticoincidence detectors (ACton + ACton)
C - Converter-Tracker - 1 Xo
       10 Si(x,y) (pitch 0.1 mm) + 8 W (0.1 Xo)*
S1, S2 - TOF detectors
Si array - Si pad (1x1 cm2) detector
S3. S4 - calorimeter scintillator detectors
CC1 - imaging calorimeter 3Xo
     4 layers: Csl 0.75 Xo + Si(x,y) (pitch 0.5 mm)
CC2 - electromagnetic calorimeter 22Xo
     BGO (1024 crystals 2.5x2.5x25 cm<sup>3</sup>)
LD - 4 lateral calorimeter detectors 50x120 cm<sup>2</sup>
ND - neutron detector
* To be changed to "25 Si(x,y) (pitch 0.1 mm) + 4 W (0.2 Xo)"
for enhanced LE instrument option
```

GAMMA-400 present configuration

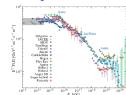
- AC anticoincidence detectors (AC top , AC lat)
- C Converter-Tracker total 1 Xo 8 layers W 0.1 Xo +Si (x,y) (pitch 0.1mm) 2 Si(x,y) no W
- \$1, \$2 TOF detectors
- \$3, \$4 calorimeter scintillator detectors
- CC1 imaging calorimeter (2Xo) 2 layers: CsI(Tl) 1Xo + Si(x,y) (pitch 0.5 mm)
- CC2 electromagnetic calorimeter CsI(TI) 23 Xo 3.6x3.6x3.6 cm³ - 28x28x12=9408 crystals
- LD 4 lateral calorimeter detectors
- ND neutron detector

Galactic/ Extragalactic gamma-ray sources

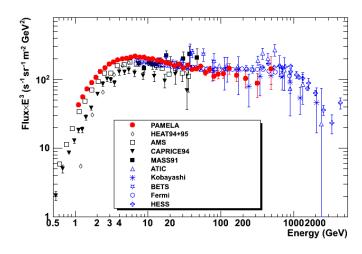
GRBs

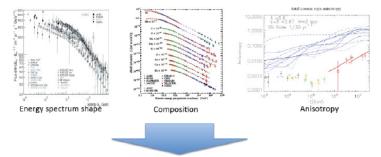

Pulsars

AGNs



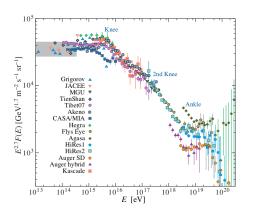
CR propagation


Knee origin



CR origin and acceleration mechanisms

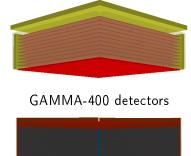
Electrons spectrum



Cosmic ray acceleration and propagation

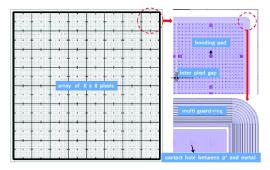
- > Study the acceleration mechanism (or mechanisms)
- > Study the limit of the acceleration phenomena
- Understand the kind of sources in the Galaxy
- Answer the question: is there the same mechanism (or source) for different nuclei?
- > Study the distribution of the sources
- > Study the propagation process in the Galaxy

Nuclei

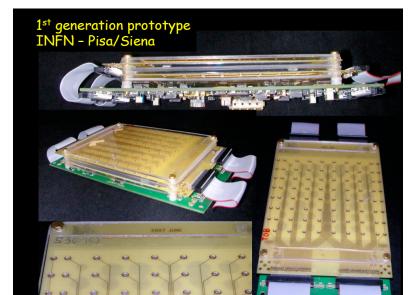

- Knee structure
- Structures in the GeV-TeV region recently discovered for p and He
- Spectral measurements in the knee region up to now are only indirect

Physics Goal

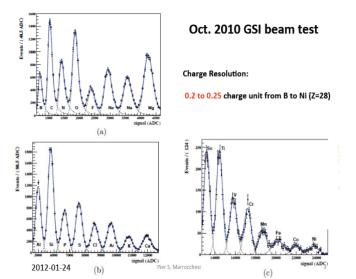
- e⁻ up to the TeV region to search for structures in the spectrum and to study close-by sources
- High energy proton and nuclei to study the knee region


Requirements

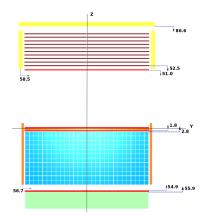
- Very large geometrical factor
- Good electron and hadron energy resolution
- Excellent electron/hadron separation


GAMMA-400: Silicon Array

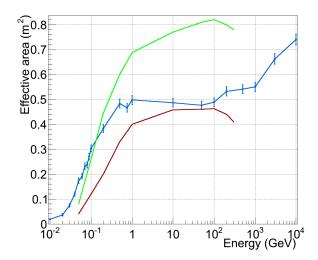
Pisa/Siena Silicon Array: 64 pixels sensor



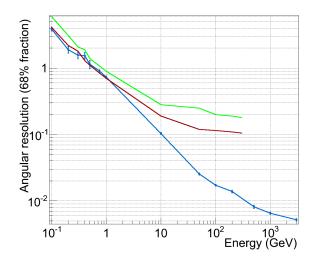
number of pixels	64
sensor size	$95~\mathrm{mm} \times 95~\mathrm{mm}$
number of guard-rings	13
active area	90.64 mm × 90.64 mm
pixel pitch	11.33 mm


GAMMA-400: Silicon Array

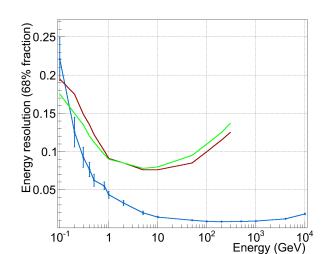
GAMMA-400: Silicon Array

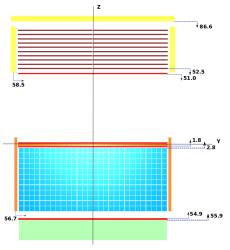


GAMMA-400: Tracker



- 4 towers
- 10 planes (each plane 2 array of the Si tiles)
 - Si: microstrip along x-axis
 - Honeycomb Al support
 - First 8 planes: W (0.1 X₀)
 - Si: microstrip along y-axis

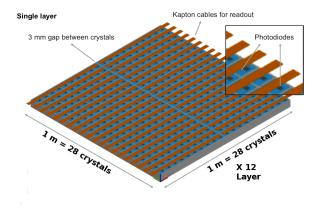

Simulated performance: effective area (Preliminary)


Simulated performance: angular resolution (Preliminary)

Simulated performance: energy resolution for γ (Preliminary)

GAMMA-400: Calorimeter

Calorimeter CC1 (Si-Csl(Tl))

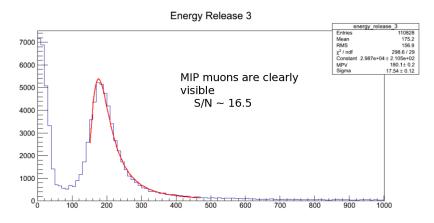

Calorimeter CC1 (51 C31(11))							
N layers	2						
Si pitch	0.5 mm						
Size	1x1x0.04 m ³						
X ₀	2						
λ_I	0.1						

Calorimeter CC2 (CsI(TI))

Nx Nx N	28x28x12
L	3.6 cm
Size	1x1x0.47 m ³
X ₀	54.6x54.6x23.4
λ_I	2.5x2.5x1.1
Mass	1683 kg

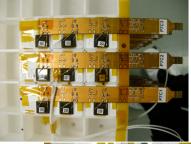
GAMMA-400 Physics **Geometry** Conclusions

Calorimeter CC2: readout


At least 2 photo diodes per crystals to cover the huge dynamical range $(1-10^7 \text{ MIP})$

Calorimeter CC2: test beam

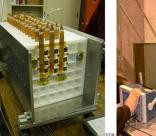
- October 2012 @ CERN SPS (e⁻, p, muons): small, so called
 "pre-prototype" (4 layers, 3 crystals each)
- February 2013 @ CERN SPS (lons): bigger, properly called "prototype" (14 layers, 9 crystals each)
- October 2013 @ INFN Frascati: 700 MeV e⁻


"Pre-prototype" results

Muon beam

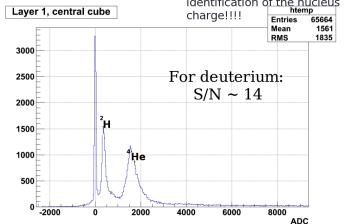
The prototype



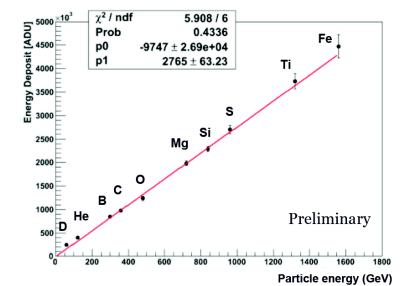


O. Adriani

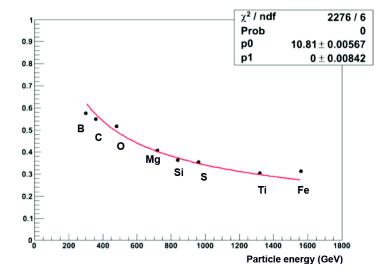
The prototype

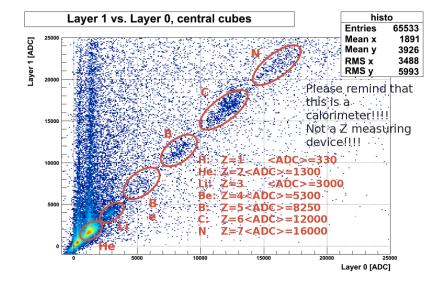


O. Adriani


Pulse height spectrum in a crystal

SPS H8 Ion Beam: Z/A = 1/2, 12.8 GV/c and 30 GV/c


Please note: we can use the data from a precise silicon Z measuring system located in front of the prototype to have an exact identification of the nucleus


Energy deposit

Energy resolution

Test beam results

Electron count estimation

Experiment	Duration	GF (m² sr)	Calo σ(E)/ E	Calo depth	e/p rejection factor	E>0.5 TeV	E>1 TeV	E>2 TeV	E>4 TeV
CALET	5 y	0.12	~2%	30 X ₀	10 ⁵	7982	1527	238	25
AMS02	10 y	0.5	~2%	16 X ₀	10 ³	66515	12726	1986	211
ATIC	30 d	0.25	~2%	18 X ₀	10 ⁴	273	52	8	1
FERMI	10 y	1.6 @ 300 GeV 0.6@ 800 GeV	~15%	8.6 X ₀	10 ⁴	59864	6362	NA	NA
G400	10 y	3.9	~2%	25.4 X ₀	10 ⁵	518819	99266	15488	1647

p and He count estimation

~knee ↓

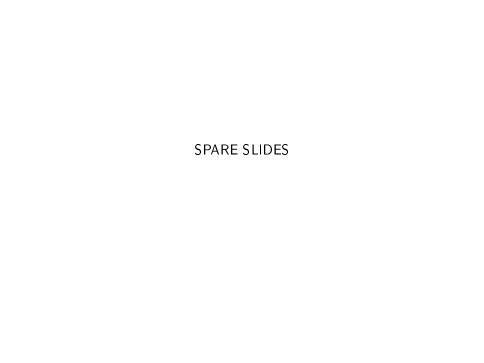
Experiment	Duration	GF (m² sr)	Calo σ(E)/ E	Calo depth		E>0.1	l PeV	E>0.	5 PeV	E>1	PeV	E>2	PeV	E>4	PeV
		, ,				р	He	р	Не	р	Не	р	Не	р	Не
CALET	5 y	0.12	~40%	30 Χ ₀	0.8	292	276	17	19	5	6	1	2	0	0
CREAM	180 d	0.43	~45%	20 Χ ₀ 1.2 λ ₀	0.8	103	97	6	7	2	2	0	1	0	0
ATIC	30 d	0.25	~37%	18 Χ ₀ 1.6 λ ₀	0.8	10	9	1	1	0	0	0	0	0	0
G400	10 y	3.9	~40%	25.4 Χ _ο 1.2 λ _ο	0.8	18951	17921	1123	1242	300	374	69	106	11	24

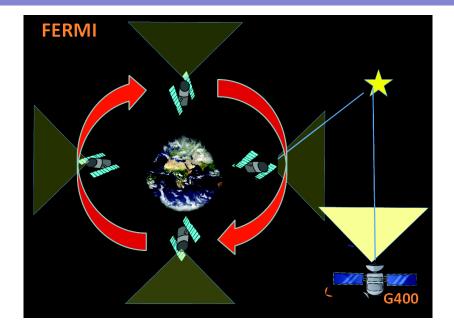
Nuclei count estimation

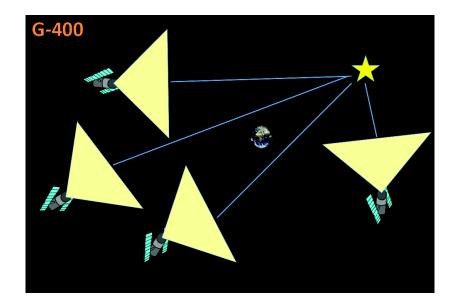
~knee ↓

Experiment Duration		GF	Calo	Calo		E>0.:	L PeV	E>0.5	5 PeV	E>1	PeV	E>2	PeV	E> 4	PeV
	(m² sr)	σ(E)/E	depth	εsel	³Li to °F	¹⁰ Ne to ²⁴ Cr	³Li to ³F	10Ne to 24Cr	³Li to ⁹ F	¹⁰ N e to ²⁴ Cr	³Li to ³F	¹⁰ Ne to ²⁴ Cr	³Li to ³F	¹⁰ Ne to ²⁴ Cr	
CALET	5 y	0.12	~30%	30 X ₀ 1.3 λ ₀	0.8	136	140	9	10	3	3	1	1	0	0
CREAM	10 y	0.46	~45%	20 Χ ₀ 1.2 λ ₀	0.8	51	53	4	4	1	1	0	0	0	0
ATIC	30 d	0.25	~37%	18 Χ ₀ 1.6 λ ₀	0.8	5	5	0	0	0	0	0	0	0	0
TRACER	30 d	5	-	TRD	0.8	93	96	6	7	2	2	1	1	0	0
G400	10 y	3.9	~40%	25.4 Χ ₀ 1.2 λ ₀	0.8	8830	9073	612	636	193	206	58	69	17	20

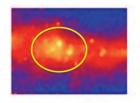
Conclusions

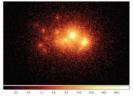

- Important for the multiwavelength/multimessenger approach
- Pointing strategy without Earth occultation / Big FOV
- The GAMMA-400 Tracker is an evolution of AGILE and Fermi-LAT
- The GAMMA-400 calorimeter design of novel concept gives unique energy resolution and depth for electrons and nuclei

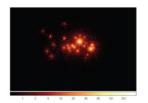

Conclusions


- The GAMMA-400 mission represents a unique opportunity to perform simultaneous measurements of photons, electrons and nuclei with unprecedented accuracy.
- GAMMA-400 can provide in-depth investigations on some of the most challenging physics items, such as DM searches, CR origin, production and acceleration to the highest energies...

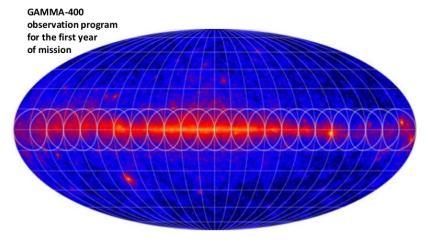
GAMMA-400 website






Cygnus region above 30 MeV

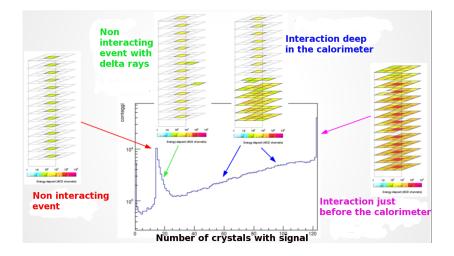
Fermi LAT 2-year flight data


Fermi LAT 2-year simulated data

Gamma-400 2-year simulated data

Alexander Moiseev Aspen 2013 Closing in on Dark Matter

Fermi Gamma-Ray Sky



Scanning of the Galaxy

GAMMA-400 Workshop

• May 2013

Topology

