

Probing Galactic Cosmic Ray Origins with the SuperTIGER LDB Instrument

John W. Mitchell, NASA Goddard Space Flight Center TeV Particle Astrophysics 2013, UC Irvine

W. R. Binns¹, R. G. Bose¹, D. L. Braun¹, T. J. Brandt², W. M. Daniels², G. A. de Nolfo²,

P. F. Dowkontt¹, S. P. Fitzsimmons², D. J. Hahne², T. Hams^{2,6}, M. H. Israel¹, J. Klemic³,

A. W. Labrador³, J. T. Link^{2,6}, R. A. Mewaldt³, J. W. Mitchell², P. Moore¹, R. P. Murphy¹,

M. A. Olevitch¹, B. F. Rauch¹, K. Sakai^{2,6}, F. San Sebastian², M. Sasaki^{2,6},

G. E. Simburger¹, E. C. Stone³, C. J. Waddington⁴, J. E. Ward¹, M. E. Wiedenbeck⁵

- 1. Washington University, St. Louis, MO 63130, USA
- 2. NASA/Goddard Space Flight Center, Greenbelt, MD 20771, USA
- 3. California Institute of Technology, Pasadena, CA 91125, USA
- 4. University of Minnesota, Minneapolis, MN 55455, USA
- 5. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
- 6. Center for Research and Exploration in Space Science and Technology (CRESST), Greenbelt, MD 20771, USA

Goal: Understand Source of GCRs

- Cosmic ray composition measurements point to an OB association origin of GCRs (Higdon & Lingenfelter ApJ 2003, Binns et al. ApJ 2005, and Rauch et al. ApJ 2009)
 - Acceleration occurs in core-collapse SNRs and probably also in the superbubble
- γ-ray measurements (Fermi, Veritas, HESS) point to SNRs, mostly remnants
 of core-collapse SNe, as at least part of the acceleration source of hadrons.
 - ~85% of SNe are core-collapse type (van den Bergh & McClure APJ 1994) and most of these occur in OB associations
 - SNRs IC443 and W44—both are core-collapse SNRs and IC443 is a member of the Gem OB-1 association (Ackermann et al. Science 339 (2013) 807).
 - Distributed emission of γ-rays with energy 1-100 GeV observed in "cocoon" along line between Cygnus OB2 to NGC 6910 (Ackermann et al. Science 334 (2011) 1103).
- Cosmic and γ-ray measurements are complementary
- SuperTIGER will provide a strong test of the OB association origin of GCRs

SuperTIGER Science Objectives

Primary objective

- Measure composition of cosmic rays 26 ≤ Z ≤ 42 with good statistics and individual-element resolution and make exploratory measurements to Z ≈ 56
- Test of OB-association source model for galactic cosmic rays
- Test of mass dependence of acceleration

Secondary objective

- Energy spectra of elements $10 \le Z \le 28 \ 0.3-10 \ \text{GeV/nuc}$
- Search for evidence of nearby microquasars

30 Doradus in LMC
Credit: NASA, ESA,F. Paresce (INAF-IASF), R. O'Connell
(U. Virginia), & the HST WFC3HST Science Oversight Committee

N44 Superbubble in LMC--Credit:Gemini Obs, AURA, NSF

Refractory and Volatile Elements— TIGER and ACE measurements

- Meyer, Drury & Ellison ApJ. 487 182 (1997)
 - Preferential acceleration of elements found in interstellar grains, and massdependent of acceleration of the volatiles.
 - But considerable intermixing of abundances for high-mass elements

Refractory and Volatile Elements— TIGER and ACE measurements

- Meyer, Drury & Ellison ApJ. 487 182 (1997)
 - Preferential acceleration of elements found in interstellar grains, and massdependent of acceleration of the volatiles.
 - But considerable intermixing of abundances for high-mass elements
- ACE--²²Ne/²⁰Ne ratio matched by mixing ~20% massive star outflow with ~80% normal ISM (Higdon & Lingenfelter 2003; Binns et al. 2005)
- The likely astrophysical site for such a mix is in OB associations

Refractory and Volatile Elements— TIGER and ACE measurements

- Meyer, Drury & Ellison ApJ. 487 182 (1997)
 - Preferential acceleration of elements found in interstellar grains, and massdependent of acceleration of the volatiles.
 - But considerable intermixing of abundances for high-mass elements

- Same data (plus ACE-CRIS data)
 - Taking abundances relative to a 20%-80% mix of massive star material (wind outflow plus SN ejecta) and normal ISM organizes data much better than when taken relative to SS abundances.
- Support for OB association origin of GCRs

Measured Element Abundances Compared to SS

Massive Star Contributions

S.E. Woosley, A. Heger / Physics Reports 442 (2007) 269 – 283

Cosmic Ray Sampling of Galaxy

- Direct measurements probe a very small volume of the Galaxy
- ♦ The propagation distances are shown for nuclei for rigidity ~1 GV

Effective propagation distance:

$$<$$
X> $\sim \sqrt{6D\tau} \sim 4.5 \times 10^{21} \text{ R}^{1/4} (\text{A}/12)^{-1/3} \text{ cm}$ $\sim 1.5 \text{ kpc R}^{1/4} (\text{A}/12)^{-1/3}$

Helium: $\sim 2.1 \text{ kpc R}^{1/4}$

Carbon: $\sim 1.5 \text{ kpc R}^{1/4} - 0.36\%$ of the surface area

Iron: $\sim 0.9 \text{ kpc R}^{1/4} - 0.16\%$

(anti-) protons:~ 6 kpc $R^{1/4}$ - 5.76%

Electrons $\sim 1 \text{ kpc E}_{12}^{-1/4}$

γ-rays: probe CR p (pbar) and e± spectra in the whole Galaxy ~50 kpc across

Chart provided by Igor Moskalenko

Propagation Distance as Function of Mass and Rigidity

- Mean propagation distance calculated from Moskalenko and Strong model is shown at left.
- Mean propagation distance of SuperTIGER nuclei is of order 1.5 kpc

SuperTIGER Design Goals

- Single element resolution with maximum Z measured limited by only by exposure $\sigma_7 \approx 0.2$ charge units
- Wide electronic dynamic range (design goal 10 ≤ Z ≤ 60)
- Proven techniques from TIGER
- As large an instrument as practical to maximize collecting area
- Wide viewing angle to maximize $A\Omega$ (~ 60° from zenith)
- Limited nuclear interactions in atmosphere or instrument
 - Light instrument (<1800 kg) to fly on a 1.11 Mcm (40 Mcf) light balloon for maximum altitude
 - Materials chosen to minimize column density of the instrument
- High degree of reliability for long flights
- Redundancy for "graceful degradation"
- Fast assembly in the field
- Recovery using any available aircraft (Twin Otter or Basler) with minimal damage

The SuperTIGER Instrument

Charge Identification Methods

Energy ≤ 2.5 GeV/nucleon (aerogel threshold) → dE/dx vs. Acrylic Cherenkov Energy >2.5 GeV/nucleon → Acrylic Cherenkov (C1) vs. Aerogel Cherenkov (C0)

Hodoscope

- Two hodoscope planes in each module.
- Each plane consists of one
 "long" hodoscope layer (length
 2.4m, width 1.16m) providing a
 "y" direction and a "short"
 hodoscope layer of two
 subsections (length and width
 1.16m) providing a "x" direction.
 Y layer and each X subsection
 consist of 144 fibers.
- Coded readout to reduce number of PMTs and readout channels needed
- 144 fibers can be read out by 24 PMTs - 12 coarse (groups of 12 adjacent fibers) and 12 fine (sequentially routed, one from each coarse group)

Hodoscope

Scintillation Detectors

- Each module has three layers of scintillator.
- Each layer has two optically separate subsections to facilitate recovery.
- 1.16 m x 1.16 m x 1cm EJ-208B plastic scintillator – the largest pieces that could be successfully cast. Selected for thickness uniformity and thickness variation gradient.
- EJ-280 green wavelength-shifter bars air coupled to edges of scintillator
- Read out by Hamamatsu R1924A (1 inch diameter) PMT
- Enclosures use thin 0.1 mm Al top windows and floors of Al/foam composite to reduce interactions. (Also used in Cherenkov detectors and for hodoscope supports.)

Cherenkov Detectors

Configuration

- Light integration volumes lined with Gore-Tex reflector
- Each read out by 42 Hamamatsu
 R877-100 PMTs (5 inch diameter)
- Common optical volume, but separable sections for recovery

Aerogel Cherenkov Detector (C0)

- Each C0 module contains eight aerogel blocks, each approximately 55cm x 55cm x 3cm.
- Three of the four half-modules contain aerogel blocks with n = 1.043 (12 blocks) and one half-module contains n = 1.025 (4 blocks).
- Acrylic Cherenkov Detector (C1)
 - Each C1 module contains two acrylic radiators 1.16 m x 1.16 m with index n = 1.49

The SuperTIGER Instrument

- Active area 5.4 m²
- Effective geometry factor (including interactions) at ₃₄Se 2.5 m²sr (6.4 times TIGER 0.4 m²sr).
- Full Instrument + Gondola Mass—1770 kg
- Power—250 Watts

Launch day

SuperTIGER Launch

Liftoff at 09:45 am NZDT Dec 9th, 2012—A perfect launch day!!

SuperTIGER Flight

- SuperTIGER was launched on Dec 08, 2012, 20:45 GMT.
- Reached float altitude (>35km) on Dec 09, 2012, 00:12 GMT
- The instrument collected data until Feb 01, 2013 20:58 GMT
- The SuperTIGER instrument could not be recovered in 2012/2013 season. This is planned for 2013/2014

SuperTIGER Flight

- SuperTIGER flew for 55 days, 1 hour, and 34 minutes.
- Failure of on-board solid state disks resulted in 44 equivalent days of data
- Record long-duration balloon (LDB) Flight for Heavy-Lift Balloon
 - Previous Record: CREAM I ~42 days
 - NASA Super Pressure Balloon Test ~54 days
- Super-TIGER coordinates 82°14.80' S, 81°54.72' W.

Data Transmission

TDRSS

- Available during the entire flight duration.
- Transfer compressed instrument data.
- 67,730,679 events between Dec 09, 2012 00:12 and Feb 01, 2013
 20:58 GMT at the float altitude (>35km)
- Line-of-sight (LOS)
 - Available while the balloon was near the launch site.
 - Transfer full instrument data.
 - 4,528,063 events between Dec 09, 2012 00:12 and Dec 10, 2012
 21:01 GMT and 6,068,108 events between Dec 24, 2012 23:50 and Dec 27, 2012 12:59 GMT at the float altitude (> 35km)
- Overall event transmission efficiency 83% for high priority events

Event Rates

83% of High Priority events were recorded.

Set priority threshold $(Z \ge 22)$

Preliminary Results

Charge histogram (not final charge resolution) showing agreement between "High Priority" and "All Event" datasets.

Preliminary Results

- Events below aerogel threshold
- dE/dX from scintillators S1 and S2 with velocity correction from acrylic Cherenkov C1
- Interacted events removed using scintillator S3
- σ_Z = 0.173 charge units at Fe

- Events above aerogel threshold
- Acrylic Cherenkov C1 signal with velocity correction from C0
- dE/dX from S1 and S2 with velocity correction from C1
- Interacted events removed
- σ_Z = 0.191 charge units at Fe

Preliminary Results

- All events
- σ_Z = 0.18 charge units at Fe (compare to 0.23 reported by TIGER)

- Events with Z > 30
- Resolution is expected to improve with better models of velocity and charge dependent scintillator saturation

Expected SuperTIGER Results

- The first Super-TIGER flight has increased statistics > factor of 4 over TIGER
 - 30Zn, 31Ga, 32Ge, 34Se, and 38Sr statistical uncertainties will be reduced by more than 2x
 - Will have sufficient statistics to add data points for ₃₆Kr (highlyvol), ₃₇Rb (mod-vol), and ₄₀Zr (refr)
- On the right, we show the TIGER
 +HEAO data points plus estimated error bars for heavier elements assuming that, in addition to the 44 days of Super-TIGER flight in-hand, we get another 60 days from future flights.

Solid symbols—measured TIGER data Open symbols—estimated error bars for heavier elements for an additional 60 days of flight

Summary

- SuperTIGER measured cosmic-ray nuclei for 55 days over Antarctica.
- More than 83% of High-Priority data (Z >= 22) were recorded through TDRSS.
- Instrument worked as expected during the flight.
- Preliminary $\sigma_7 = 0.18$ charge units at Fe.
- SuperTIGER data will be a strong test for the OB Association model of GCR origins.
- Recovery planned for 2013/2014

BESS-Polar II Recovery 2009-2010

Staged from WAIS Divide/Byrd Surface Camp

BESS-Polar II Recovery 2009-2010

• Basler (turboprop DC-3) used due to range and instrument size

BESS-Polar II Recovery 2009-2010

Camped on site 13 days for disassembly

