Searches for point and extended sources of neutrinos with IceCube

+45°

Jacob Feintzeig for the IceCube Collaboration University of Wisconsin, Madison

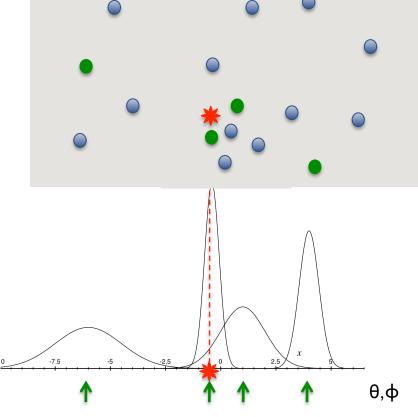
TeVPA, August 2013, Irvine, CA

-85°

Contents

- Neutrinos in the context of multi-messenger astronomy
- Point source analysis method in IceCube
- Recent results
 - All-sky scan and *a priori* source list search using 4 years of detector data
 - Targeted searches using stacked source catalogs with 3 years of detector data
 - All-sky scan using sample of contained vertex events
- Future outlook
 - Improvements in the Southern hemisphere

Neutrinos are excellent candidates for high-energy astronomy

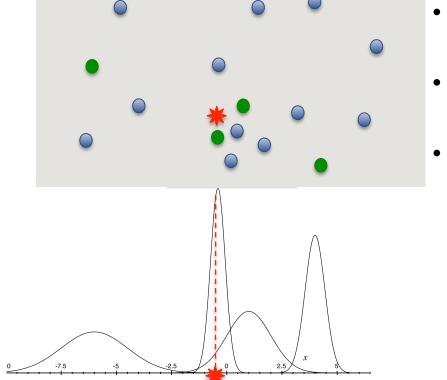

- **Gamma-rays:** Absorbed at highest energies, multiple emission mechanisms
- Protons: Scrambled by magnetic fields, only point at extremely high energies
- Neutrinos: Neutral charge and low crosssection mean they point back to source and are not absorbed

Astrophysical beam dump

Contents

- Neutrinos in the context of multi-messenger astronomy
- Point source analysis method in IceCube
- Recent results
 - All-sky scan and *a priori* source list search using 4 years of detector data
 - Targeted searches using stacked source catalogs with 3 years of detector data
 - All-sky scan for low-background sample of high-energy neutrinos
- Future outlook
 - Improvements in the Southern hemisphere

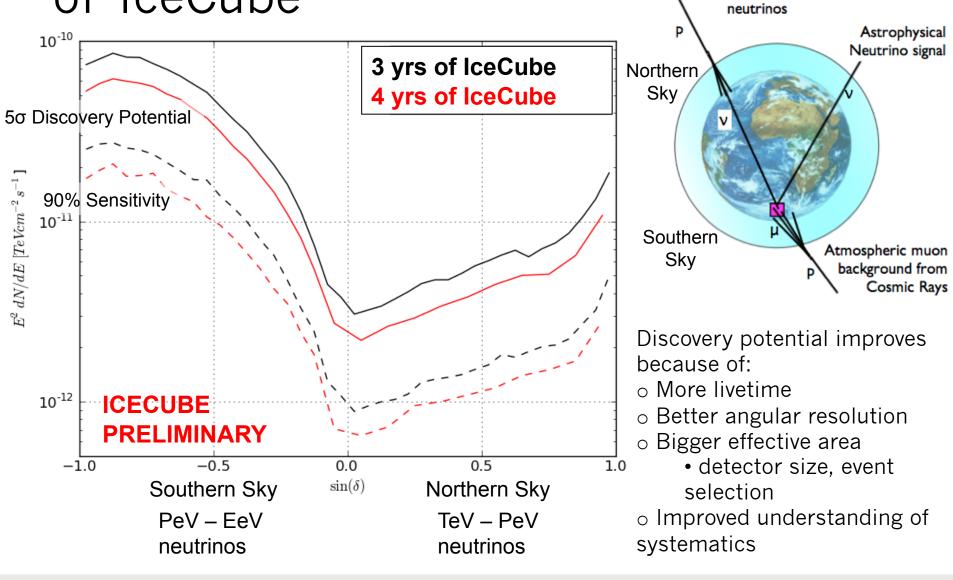
To search for point sources, look for statistically significant spatial clustering of events


- Location of candidate neutrino event on the sky
- 🖌 Test point source hypothesis here

- Signal: Astrophysical neutrinos clustering in space
- Background: Isotropic atmospheric neutrinos
- Un-binned maximum likelihood method
 - Spatial probability distribution function for signal modeled as a 2D gaussian

5

- Width from reconstruction uncertainty
- Energy information used to weight events
- Signal expected to be higher energy than background


To search for point sources, look for statistically significant spatial clustering of events

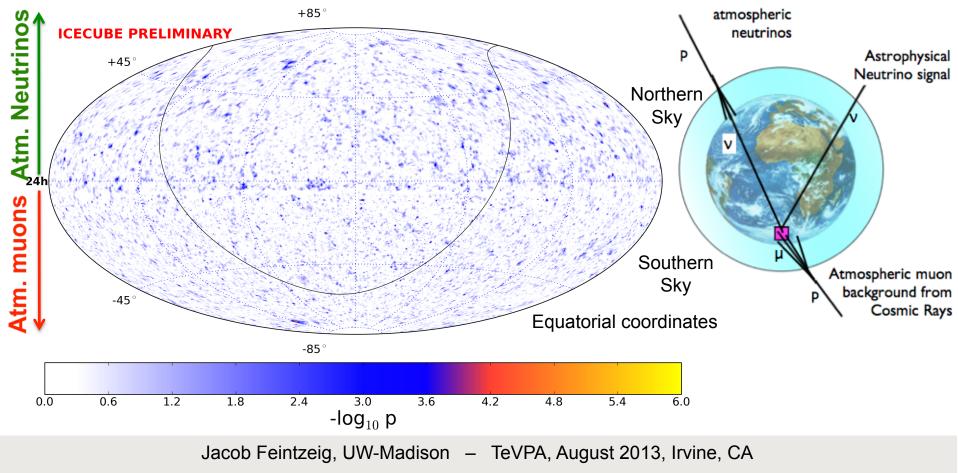
- Signal: Astrophysical neutrinos clustering in space
- Background: Isotropic atmospheric neutrinos
- Un-binned maximum likelihood method
 - Spatial probability distribution function for signal modeled as a 2D gaussian
 - Width from reconstruction uncertainty
 - Energy information used to weight events
 - Signal expected to be higher energy than background

At each point in the sky, use likelihood to fit for # of signal events and neutrino spectral index Likelihood translates events on the sky into probabilities

Discovery potential for 4 years of IceCube

Contents

- Neutrinos in the context of multi-messenger astronomy
- Point source analysis method in IceCube
- Recent results
 - All-sky scan and a priori source list search using 4 years of detector data
 - Targeted searches using stacked source catalogs with 3 years of detector data
 - Spatial clustering of 2 year contained vertex event sample
- Future outlook
 - Improvements in the Southern hemisphere

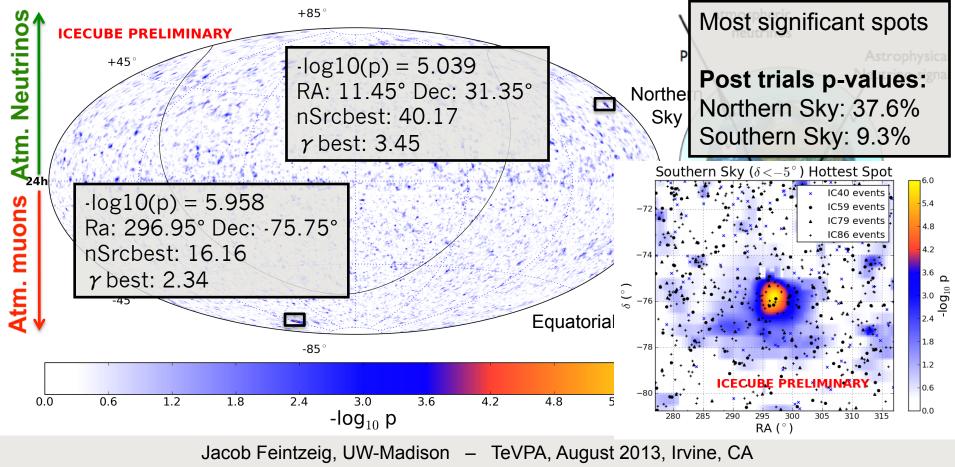

No evidence of point sources was found in four years of detector data

- Search for time-independent sources
- 394,000 total events

See 2013 ICRC proceeding # 0550

9

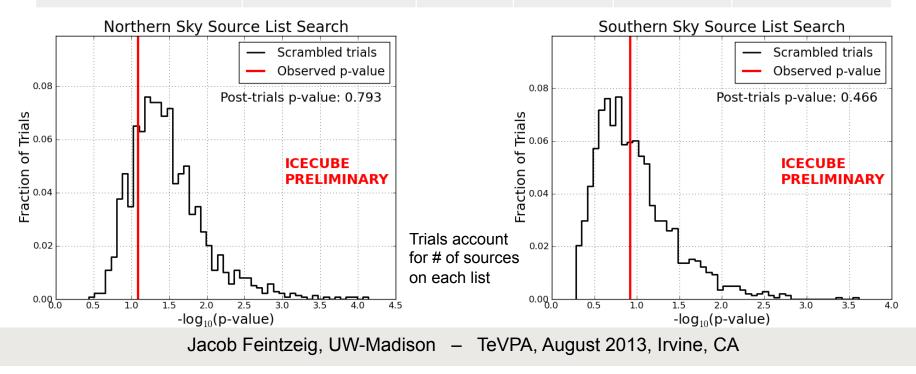
- 178k neutrino candidates in North, 216k atmospheric muons in South
- Livetime: 1371 days, including first year of completed detector

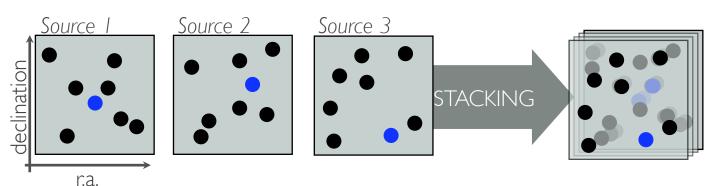


No evidence of point sources was found ¹⁰ in four years of detector data

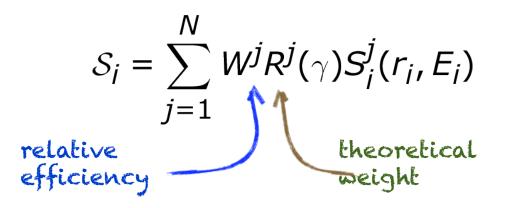
- Search for time-independent sources
- 394,000 total events

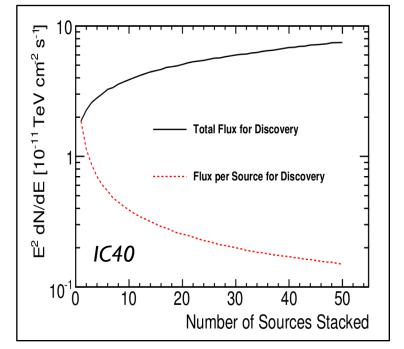
See 2013 ICRC proceeding # 0550


- 178k neutrino candidates in North, 216k atmospheric muons in South
- Livetime: 1371 days, including first year of completed detector


Search using *a priori* list of sources is consistent with background

- List consists of 44 promising sources
 - Supernova remnants, active galactic nuclei, etc. that are observed in gamma rays or for which models predict neutrino emission


Most significant source in:	Source	n _s best	γ best	Pre-trials p-value	Post-trials p- value
Northern sky	3C 123.0	12.54	3.95	0.081	0.793
Southern sky	PKS 1406-076	7.50	3.95	0.12	0.466



Stacking specific source classes enhances discovery potential

- Look at known collection of sources, with known extensions.
- Constrain specific astrophysical models.

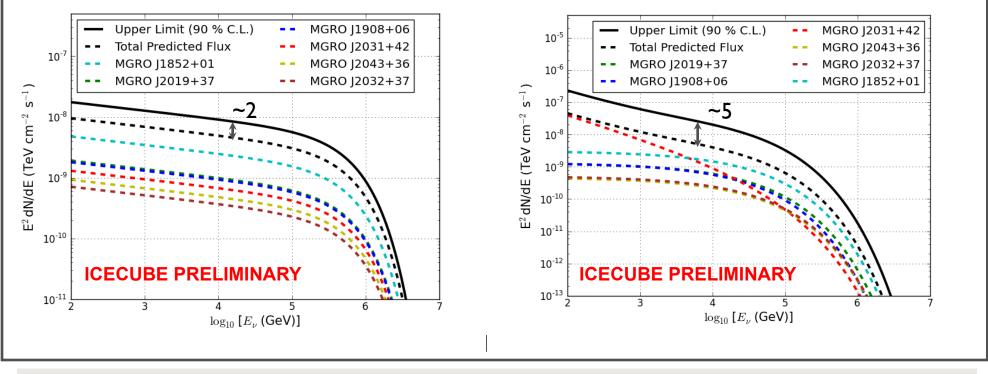
Results from five catalogs ¹³ consistent with background _{astro-ph/1307.6669}

Catalog	Sources	Theoretical Weighting	Sample	p-value	
6 Milagro SNRs	6	No	IC79+IC59	20.4 %	
Starburst Galaxy	127	Yes, FIR observation	IC79+IC59+IC40	≥ 50 %	
Galaxy Cluster	5	Yes, 4 models tested	IC79+IC59+IC40	All ≥ 50 %	
Molecular Cloud SNR	4	Yes, integrated γ -flux	IC79+IC59+IC40	≥ 50 %	
Black Hole	233	Yes, FIR observations	IC79+IC59+IC40	44.31%	

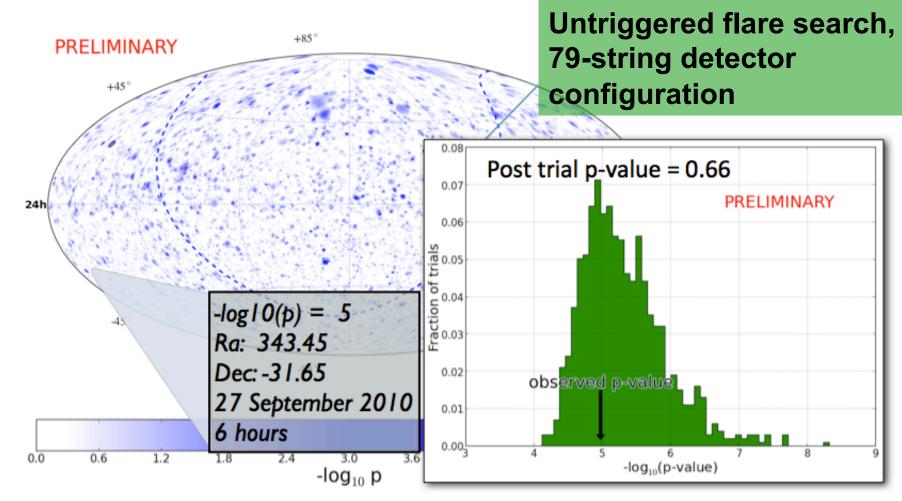
•Milagro 6 was *a-posteriori* positive fluctuation in IC40.

- •Starburst catalog based on Becker et al. (arXiv:0901.1775)
- •Galaxy Cluster different models depend on how the CRs are distributed.
- •Molecular Cloud catalog includes IC443 and W44: Fermi in Science 15/2/2013

90% C.L. upper limits for 6 Milagro **SNR** associations astro-ph/1307.6669

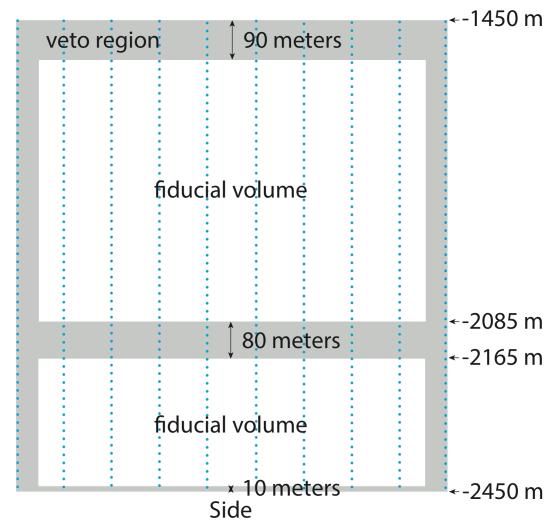

MODEL

•F. Halzen, A. Kappes and A. O'Murchadha (Phys. Rev. D78:063004, 2008).

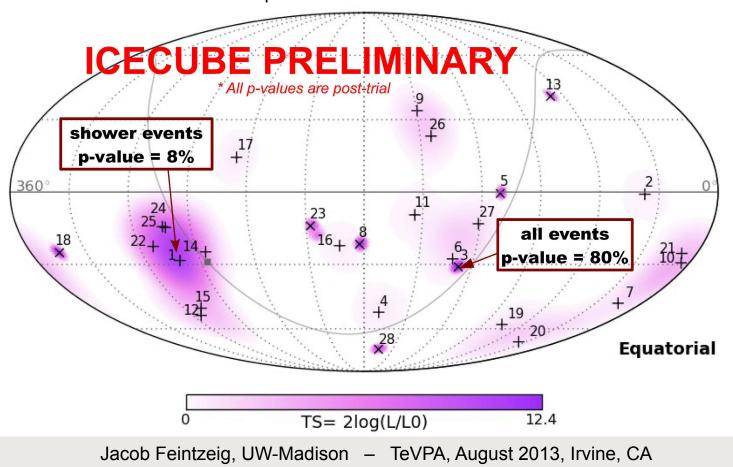

•Based on published TeV Gamma-ray at that time ($E_{cut-off} \sim 300 \text{ TeV}$)

MODEL

•Update on the model prediction with recent gamma-ray observation ($E_{cut-off} \sim 30 \text{ TeV}$). •For those sources with no measurement and spectral index of 2 and $E_{cut-off} = 31 \text{ TeV}$

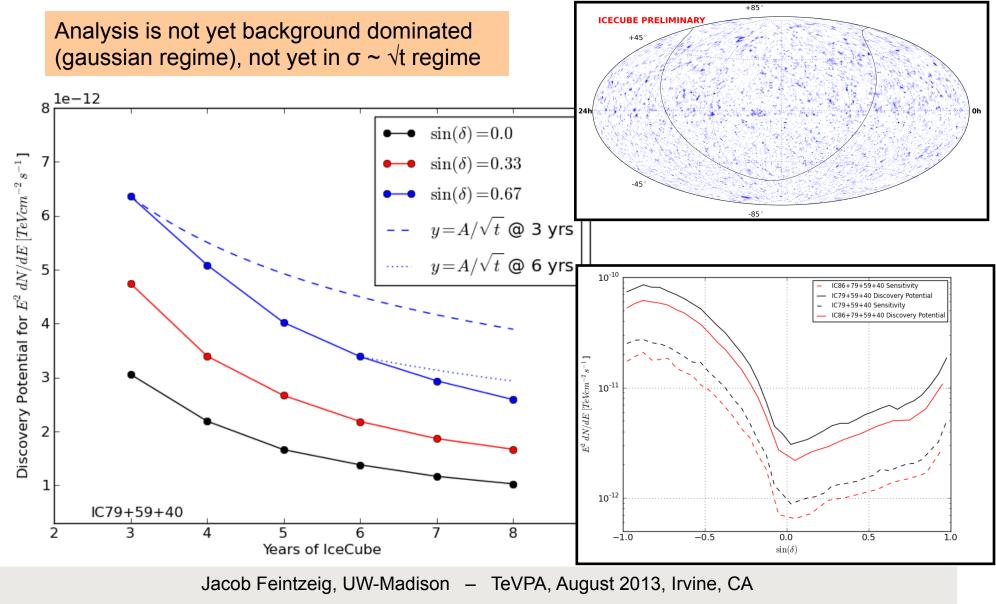

All searches for transient sources are also consistent with background

See 2013 ICRC, contribution #0649

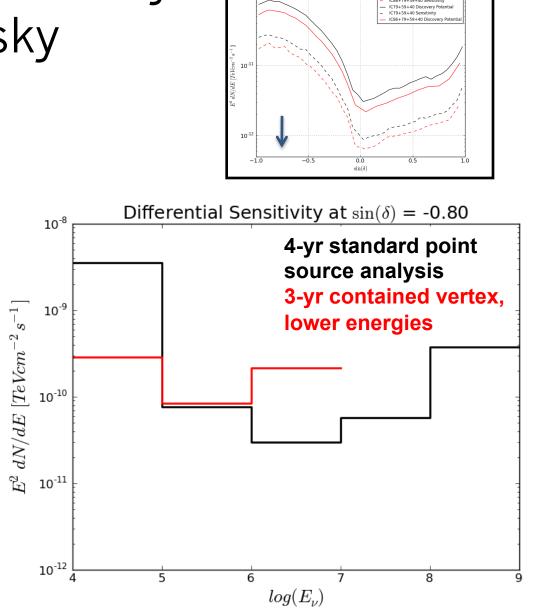

Point source search using sample of 28 events with contained vertices

- 2 years of data
 - Charge>6000 & vertex inside fiducial volume
- Compared to previous searches, this analysis has:
 - Much lower background
 (28 total events instead of 400k)
 - Lower energy threshold in the Southern hemisphere
 - Track (<1° pointing) and cascade (poor angular resolution) events

No evidence of spatial clustering found in contained vertex event sample


- Searched for:
 - Point source in sample of all 28 events
 - Point source in subsample of 21 cascade events

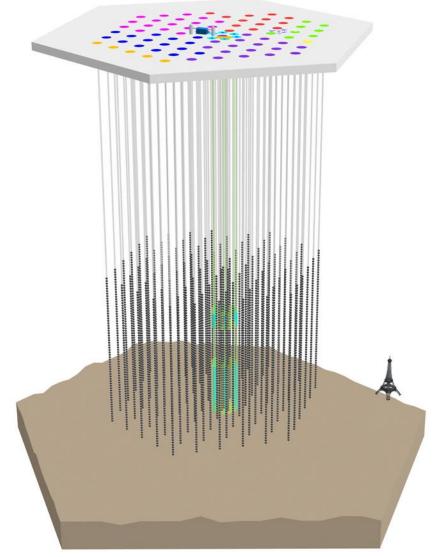
Contents


- Neutrinos in the context of multi-messenger astronomy
- Point source analysis method in IceCube
- Recent results
 - All-sky scan and *a priori* source list search using 4 years of detector data
 - Targeted searches using stacked source catalogs with 3 years of detector data
 - All-sky scan for low-background sample of high-energy neutrinos
- Future outlook
 - Improvements in the Southern hemisphere

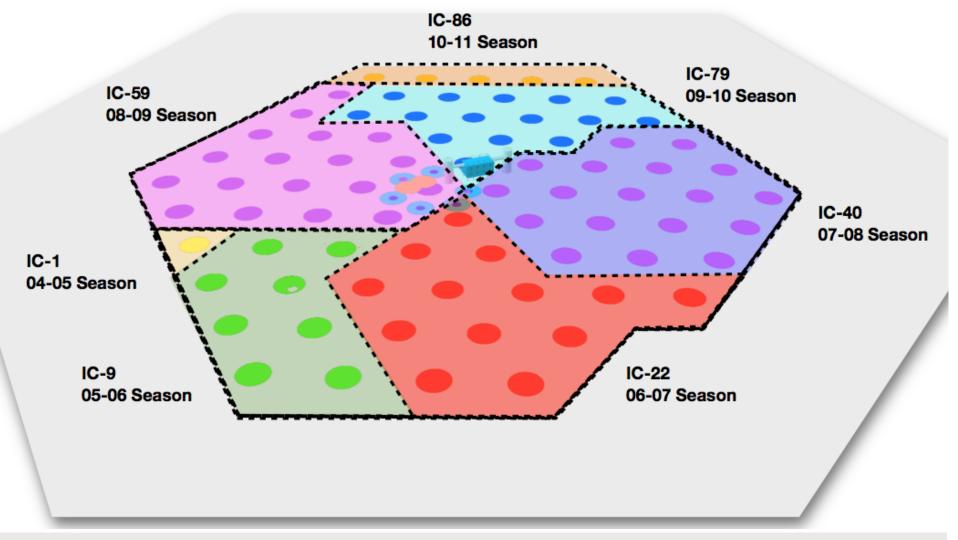
Discovery potential will improve as more data is added to analysis

Improving the sensitivity in the Southern sky

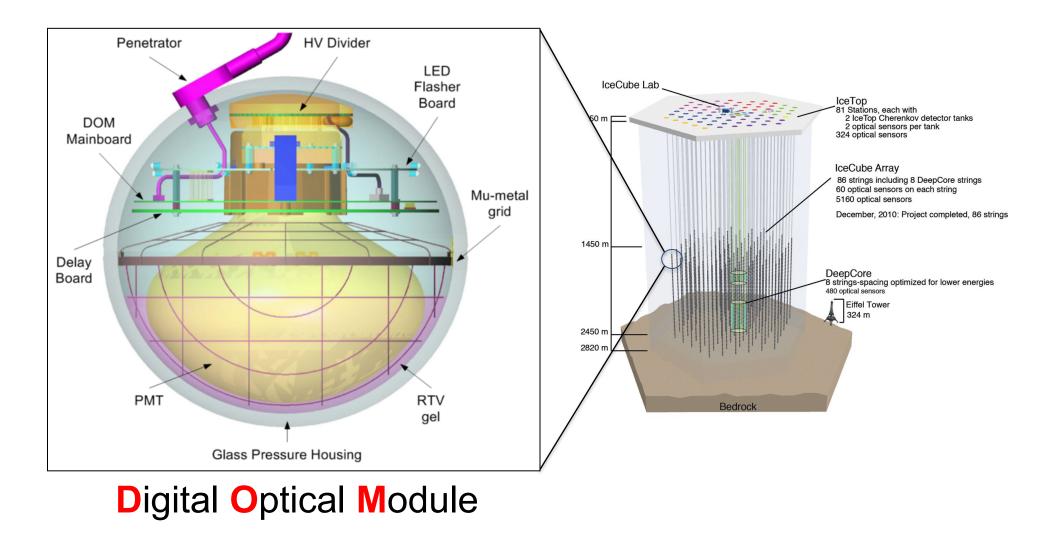
- Method of spatial clustering for contained vertex events
 - Combining tracks and cascades
 - Background estimation
- Extend contained vertex event selection to lower energies
 - More signal, more tracks
 - More background
 - Combine with 4 year
 "standard analysis" for most statistical power



Conclusion


- So far, no search has found significant clustering of neutrino events or association with sources
 - All-sky search and *a priori* source list using 4 years of detector data
 - Stacking analyses using 3 years of data
 - Milagro supernova remnants (SNRs)
 - Starburst galaxies
 - Galaxy clusters
 - SNRs associated with molecular clouds
 - Black hole candidates
 - Spatial clustering analysis of 28 contained vertex events
- Discovery potential will continue to improve stay tuned for more results!

Backup


IceCube uses a fully-instrumented km³²³ of ice to detect high-energy particles

During construction, IceCube ran in partial detector configurations

Light is detected via photomultiplier tubes, waveforms are digitized and read out to surface

The IceCube Collaboration

University of Alberta

University of Oxford

Ecole Polytechnique Fédérale de Lausanne University of Geneva

Clark Atlanta University Georgia Institute of Technology Lawrence Berkeley National Laboratory Ohio State University Pennsylvania State University Southern University and A&M College Stony Brook University University of Alabama University of Alabama University of Alabama University of Alabama University of California-Berkeley University of California-Irvine University of Delaware University of Maryland University of Maryland University of Wisconsin-Madison

Université Libre de Bruxelles Université de Mons

> University of Gent Vrije Universiteit Brussel

Stockholm University Uppsala Universitet

University of the West Indies

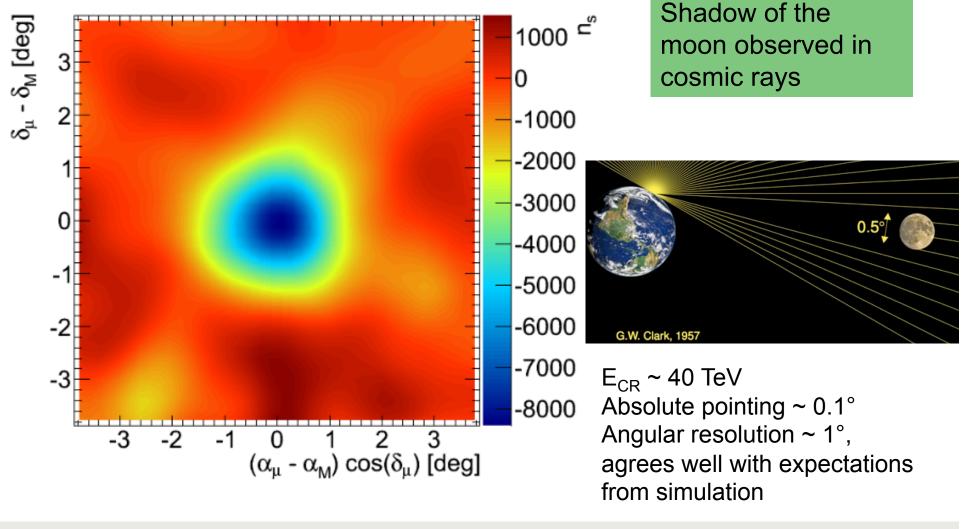
Deutsches Elektronen-Synchrotron Humboldt Universität Ruhr-Universität Bochum RWTH Aachen University Technische Universität München Universität Bonn Universität Dortmund Universität Mainz Universität Wuppertal

Chiba University

26

University of Adelaide

University of Canterbury


International Funding Agencies

University of Wisconsin-River Falls

Fonds de la Recherche Scientifique (FRS-FNRS) Fonds Wetenschappelijk Onderzoek-Vlaanderen (FWO-Vlaanderen) German Research Foundation (DFG) Deutsches Elektronen-Synchrotron (DESY) Knut and Alice Wallenberg Foundation The Swedish Research Council (VR) University of Wisconsin Alumni Research Foundation (WARF)

Federal Ministry of EducatJacob Feintzeig, FUW-Madisonar ReseTeVPA, August 2013, Irvine, CAcience Foundation (NSF)

Using geometry and timing of detected ²⁷ photons, neutrino directions are reconstructed to less than 1°

Likelihood method translates events on the sky into p-values

Signal: Astrophysical neutrinos clustering in space **Background:** Isotropic atmospheric neutrinos

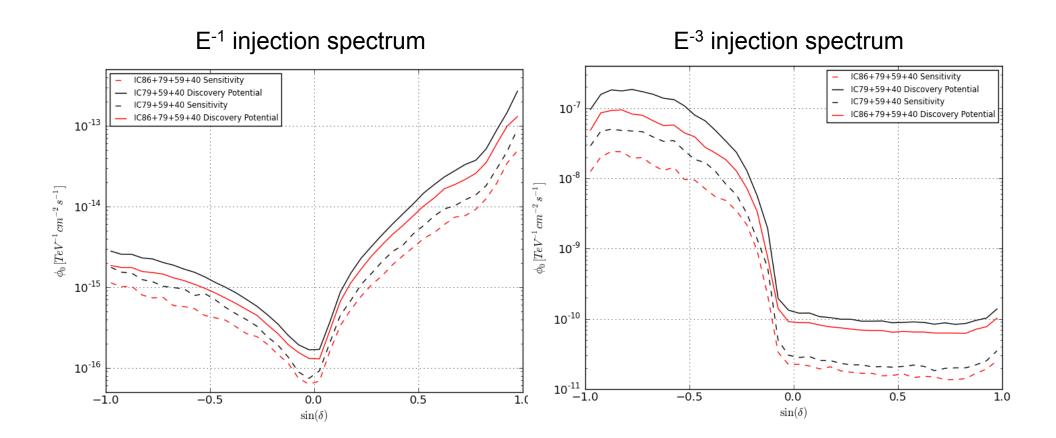
Maximize the likelihood function:

$$\mathcal{L}(n_{s},\gamma) = \prod_{i=1}^{N} \left(\begin{array}{c} n_{s} \\ N \end{array} \mathcal{S}_{i}(\gamma) + (1 - \begin{array}{c} n_{s} \\ N \end{array}) \mathcal{B}_{i} \right)$$
Braun et. al., arXiv: 0801.1604
Fits statistic:
$$\lambda = \log \left(\frac{L(\hat{\gamma}, \hat{n}_{s})}{L(n_{s} = 0)} \right)$$
Obtain **p-value** by comparing test statistic for real data to random trials from scrambled data

Complete source list results – northern sky²⁹

	Source	$RA(^{\circ})$	Dec (°)	\hat{n}_s	$\hat{\gamma}$	$B_{2^{\circ}}$	p-value	$\Phi^{90\%}_{ u_\mu+ar{ u_\mu}}$				
Ì	S5 0716+71	110.47	71.34	1.38	3.95	66.0	0.49	3.21				
	M82	148.97	69.68	0.00	2.61	65.8	_	2.93				
	$1 ES \ 1959 + 650$	300.00	65.15	10.22	3.95	70.4	0.11	4.48				
	TYCHO	6.36	64.18	7.92	3.95	71.0	0.22	3.55				
	LSI 303	40.13	61.23	0.00	3.02	71.3	_	1.98	ICECUBE PRELIMINARY			
	Cas A	350.85	58.81	0.00	2.70	71.4	_	1.77				
	$1 ES \ 2344 + 514$	356.77	51.70	5.84	3.95	76.6	0.29	2.20				
	3C66A	35.67	43.04	0.00	2.51	82.1	-	1.31				
	H 1426+428	217.14	42.67	0.00	2.58	83.1	_	1.30				
	BL Lac	330.68	42.28	6.06	3.25	83.1	0.37	1.77	Linnar limita in 10-12			
	NGC 1275	49.95	41.51	0.00	3.32	83.8	_	1.32	Upper limits in 10 ⁻¹²			
	Cyg OB2	308.08	41.51	0.00	3.21	83.8	_	1.27	TeV ⁻¹ cm ⁻² s ⁻¹			
	Cyg X-3	308.11	40.96	6.41	3.95	85.5	0.29	2.09				
	Cyg A	299.87	40.73	1.36	1.35	85.5	0.21	2.43				
	Mrk 501	253.47	39.76	11.43	3.95	88.3	0.12	2.76				
	Mrk 421	166.11	38.21	2.31	1.75	89.7	0.34	1.85				
	$4C \ 38.41$	248.81	38.13	0.00	2.53	89.7	—	1.29				
	MGRO J2019+37	305.22	36.83	4.53	3.95	92.1	0.43	1.62				
	Cyg X-1	299.59	35.20	4.82	3.95	93.7	0.34	1.76				
	3C 123.0	69.27	29.67	12.54	3.95	102.9	0.081	2.54	Most significant source			
	W Comae	185.38	28.23	3.43	1.85	103.8	0.23	1.89	C C			
	IC443	94.18	22.53	6.26	3.00	111.5	0.31	1.44	in northern sky			
	Crab Nebula	83.63	22.01	0.00	2.73	111.5	-	0.91	y			
	1 ES 0229 + 200	38.20	20.29	12.58	3.95	114.5	0.16	1.90				
	Geminga	98.48	17.77	3.06	3.95	123.1	0.47	1.05				
	PKS 0235+164	39.66	16.62	10.45	3.85	125.6	0.23	1.55				
	3C 454.3	343.49	16.15	9.81	2.91	125.6	0.22	1.55				
	PKS 0528+134	82.73	13.53	0.00	2.52	128.9	-	0.84				
	M87	187.71	12.39	0.00	2.66	129.9	-	0.82				
	PKS 1502+106	226.10	10.49	5.17	2.35	132.7	0.28	1.30				
	MGRO J1908+06	286.98	6.27	0.00	3.05	145.0	_	0.66				
	HESS J0632+057	98.25	5.80	12.98	3.15	148.0	0.19	1.24				
	SS433	287.96	4.98	0.00	2.53	151.0	_	0.70				
	3C 273	187.28	2.05	0.73	3.95	155.4	—	0.63				

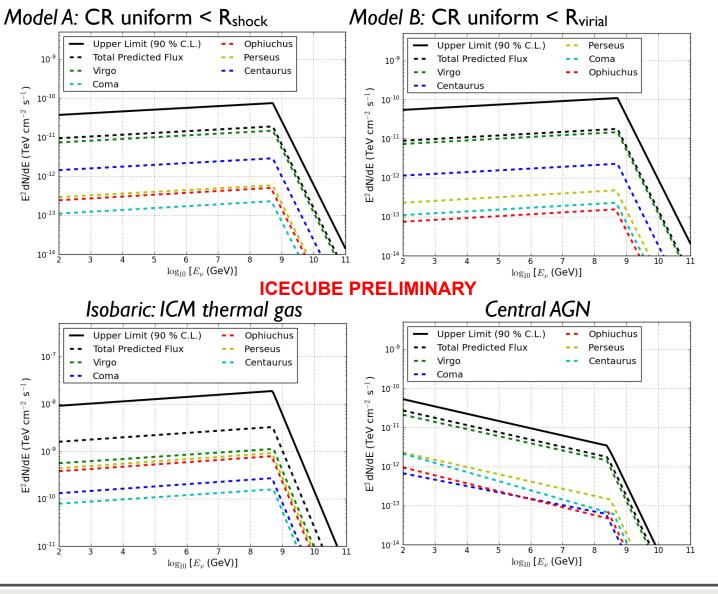
Complete source list results – southern sky


ICECUBE PRELIMINARY

 $\mathbf{2}$

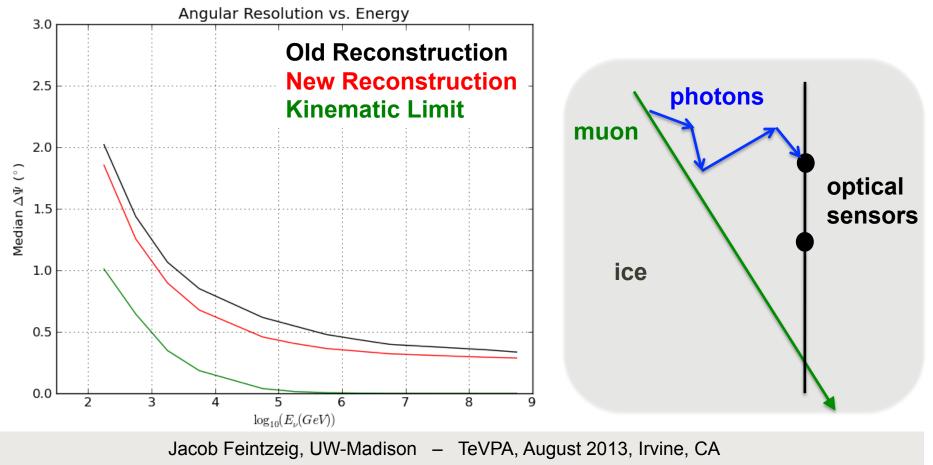
Source	RA (°)	Dec (°)	\hat{n}_s	$\hat{\gamma}$	$B_{2^{\circ}}$	p-value	$\Phi^{90\%}_{ u_{\mu}+\bar{ u_{\mu}}}$		
3C279	194.05	-5.79	0.00	2.50	134.3	—	1.61		
QSO 2022-077	306.42	-7.64	0.00	2.50	136.9	_	1.63		
PKS 1406-076	212.24	-7.87	7.50	3.95	136.9	0.12	3.24	←──	Most significant
QSO 1730-130	263.26	-13.08	0.00	2.51	148.5	_	3.48		source in
Sgr A*	266.42	-29.01	2.71	2.85	145.8	0.32	12.33		
PKS 1622-297	246.53	-29.86	1.28	3.30	145.8	0.47	10.64		southern sky
PKS 2155-304	329.72	-30.23	0.00	2.54	147.1	_	9.02		
PKS 1454-354	224.36	-35.65	0.00	3.34	141.7	_	10.81		
Cen A	201.37	-43.02	0.00	3.13	141.6	_	12.99		
PKS 0537-441	84.71	-44.09	0.00	2.52	140.8	_	13.88		

Upper limits in 10⁻¹² TeV⁻¹cm⁻²s⁻¹


Discovery Potentials for 4 Years of IceCube

Catalogs for stacking searches

- 6 sources with SNR associations, reported by Milagro: Motivated by a posteriori study of IC40 Milagro 17 Stacking. IC 40 hence excluded to avoid bias. Described by Halzen, Kappes and O'Murchada.
- *Starburst Galaxies:* Catalog of 127 sources described by Becker, Biermann, Dreyer, Kneiske
- Galaxy Clusters: Five nearby clusters with flux models varying according to the model of CR acceleration as described by Murase, Inoue, Nagataki.
- Molecular Cloud Associated SuperNova Remnants: 4
 Sources as per the Catalog defined by T. Montaruli, J. Becker and F
 Schuppan
- Black Hole Candidate Stacking: 233 Candidates within the GZK radius, as per catalog defined by L. Caramete and J Biermann


Galaxy Cluster: Upper limits

Upper limits calculated for the 4 different models based on the CR distribution in the Galaxies.

Improving the analysis via better angular resolution

- New event reconstruction techniques use detailed information on photon propagation in the glacial ice
- Results in improved angular resolution at all energies

