
The TeV Gamma-ray Milky Way
as seen by H.E.S.S.
Christoph Deil
for the H.E.S.S. collaboration
August 26, 2013 @ TeVPA • MWL Intro

• H.E.S.S. telescopes
• H.E.S.S. Galactic plane

survey (HGPS)
• Pulsar wind nebula

source population
• Diffuse emission
• Galactic center (brief)
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Now we have much better gamma-ray data:
Fermi (100 MeV - 100 GeV) and HESS (100 GeV - 100 TeV)
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Fermi All-Sky Count Map > 1 GeV

Total = Resolved + Unresolved Sources + Diffuse
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Accelerators

SNRs: nuclei + electrons

matter

photon fields

magnetic fields

Targets

PWNe: electrons

Timescales:
Accelerators live 1 - 100 kyr
Cosmic rays leave after 10 Myr
Galaxy is 10 Gyr old
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Crab Nebula  (radio, optical, X-ray)

The Crab nebula is one
of the brightest TeV sources:
F( >1TeV ) = 2.2 x 10^-11 cm^-2 s^-1

= 1 gamma / (10^3 m^2 h)
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High Energy Stereoscopic System – H.E.S.S.

An imaging atmospheric Cherenkov telescope array

Location:  Namibia  Energy Range: 100 GeV — 100 TeV
Start:   2003   Angular Resolution: 0.1 deg
Pointed Observations  Field of View: 5 deg 
Sensitivity: 1% of Crab nebula flux in ~ 25 hours
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10 years of H.E.S.S. operation

• H.E.S.S. is an international collaboration of ~ 150 
physicists / astronomers from many countries
(mostly Europe, plus Namibia, South Africa, Australia)

• About 10,000 hours of pointed observations taken:
~ 50% along the Galactic plane, over 60 sources
~ 50% in extragalactic space, ~ 20 sources

• Over 100 scientific papers in reviewed journals

• Listed among the 10 most influential astronomical 
instruments
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“The Crab Nebula seen with the H.E.S.S. II telescope”
http://www.mpi-hd.mpg.de/hfm/HESS/pages/home/som/2012/12/
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H.E.S.S. Galactic plane survey
Exposure and Source count

  

2004

Observing the TeV Galaxy...

  

2004

2007

Observing the TeV Galaxy...

  

2004

2007

2010

Observing the TeV Galaxy...

  

2004

2007

2010

Observing the TeV Galaxy...Peter Eger, May 2011, RICAP, Rome

Discoveries of Galactic VHE gamma-ray 

sources

data from TeVCat
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HESS Galactic plane survey 2013
Sensitivity and significance maps

Rencontres de Moriond 2013: “Charting the TeV Milky Way:
H.E.S.S. Galactic plane survey maps, catalog and source populations”
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Point source sensitivity of 0.5% to 2% 
Crab nebula flux at GLAT = 0 deg, almost 
no exposure beyond |GLAT| > 3 deg

Significance map with blue-red transition 
at ~ 7 sigma, corresponding to ~ 5 sigma 
post-trial. Over 60 TeV sources discovered.
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Survey sensitivity and horizon
H.E.S.S. survey maps, catalog and source population

33RD INTERNATIONAL COSMIC RAY CONFERENCE, RIO DE JANEIRO 2013
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Figure 3: H.E.S.S. Galactic sources: Integrated flux in the 1�10 TeV (cm�2 s�1) energy band versus source radius (arcmin).
The blue line depicts an estimate of the radius-dependant sensitivity of H.E.S.S. SNRs are marked in yellow, PWNe in red,
and all other classes (including those unidentified or confused) in black. (Data taken from TeVCat.)

Figure 4: Face-on view of our Galaxy, with the spiral arms [9] drawn as solid grey lines. The H.E.S.S. horizons for 1% and
10% of the Crab Nebula luminosity above 1 TeV (ph s�1), for a 5-s point-like source, are depicted by the blue curves.
Superimposed are the H.E.S.S. Galactic sources with known distances, as listed in TeVCat. Colours as in Fig. 3.

H.E.S.S. survey maps, catalog and source population
33RD INTERNATIONAL COSMIC RAY CONFERENCE, RIO DE JANEIRO 2013
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Figure 3: H.E.S.S. Galactic sources: Integrated flux in the 1�10 TeV (cm�2 s�1) energy band versus source radius (arcmin).
The blue line depicts an estimate of the radius-dependant sensitivity of H.E.S.S. SNRs are marked in yellow, PWNe in red,
and all other classes (including those unidentified or confused) in black. (Data taken from TeVCat.)

Figure 4: Face-on view of our Galaxy, with the spiral arms [9] drawn as solid grey lines. The H.E.S.S. horizons for 1% and
10% of the Crab Nebula luminosity above 1 TeV (ph s�1), for a 5-s point-like source, are depicted by the blue curves.
Superimposed are the H.E.S.S. Galactic sources with known distances, as listed in TeVCat. Colours as in Fig. 3.
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Spectral analysis of the Galactic Center emission at very-high-energy gamma-
rays with H.E.S.S
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Abstract: The Galactic Centre region has been observed by the complete H.E.S.S.-I array of ground-based
Cherenkov telescopes since 2004 leading to the detection of the very-high-energy (VHE, E ≥ 100 GeV) gamma-
ray source HESS J1745-290 coincident in position with the supermassive black hole Sgr A*. A TeV gamma-ray
diffuse emision has been detected along the Galactic ridge, very likely to be related to cosmic-ray interactions
in giant molecular clouds of the Central Molecular Zone. We report here on a spectral morphology study of the
inner 50 pc of the Galactic Centre region using the full data set of 2004-2012 observations . The contamination
from diffuse emission to HESS J1745-290 is subtracted which allows to recover the intrinsic spectrum of the
central source. The intrinsic source spectrum is well described by a power-law spectrum with an exponential
energy cut-off at ∼ 7 TeV.

Keywords: Galactic Center, gamma rays, HESS J1745-290, Diffuse emission

1 Introduction
An impressive observational activity developed in the
Galactic Center (GC) region since the detection of a
gamma-ray emission from the direction of the Galactic
Center by the EGRET satellite (3EG J1746-2852, [1]).
Observations with imaging atmospheric Cherenkov tele-
scopes soon after gave rise to the detection of an emission
in the very-high-energy (VHE, E > 100 GeV) gamma-
ray regime by the CANGAROO [2], VERITAS [3],
H.E.S.S. [4] andMAGIC [5]. The Fermi-LAT satellite then
detected a central source, 1FGL J1745.6-2900, coincident
in position with Sgr A* [6], though no firm conclusion
does exist about the association of the Fermi-LAT source
with the VHE gamma-ray source due to the presence of
a strong diffuse gamma-ray emission in the same energy
range. The observations of the GC region with the H.E.S.S.
instrument led to the detection of a point-like source of
VHE gamma-rays, HESS J1745-290, with an unprecented
accuracy in the TeV energy range thanks to its location in
the southern hemisphere, its wide field of view and the ex-
cellent hardware performances. While spatially coincident
with the supermassive black hole Sgr A*, the position of
HESS J1745-290 was still compatible with the supernova
remnant Sgr A East, and the plerion G359.95-0.04, despite
the angular resolution of the H.E.S.S. instrument of about
6′. A larger exposure on the GC region revealed a ridge
of diffuse emission extending along the Galactic plane for
about 2◦ in Galactic longitude, which was found to be spa-
tially correlated to giant molecular clouds located in the
central molecular zone [7]. The strong correlation between
the morphology of the diffuse gamma-ray emission and
the density of molecular clouds indicates the presence of a
proton accelerator in the GC region, since energetic proton
interactions with the cloud material would give rise to the
observed gamma-ray flux via π0 decays. After a careful
investigation of the pointing systematics of the H.E.S.S.
telescopes, the systematic error on the centroid position of

HESS J1745-290 emission was reduced to 13′′, allowing
the exclusion of Sgr A East supernova remnant as the main
counterpart of the VHE emission [8]. The very nature of
this VHE central emission remains still unknown, leaving
Sgr A* [9, 10], G359.95-0.04 [11, 12] and the inner 10
pc diffuse emission around Sgr A* [13] as plausible con-
tributing sources for the observed emission. The H.E.S.S.
experiment has been taking observations of the Galactic
Center region for nine years with the full telescope array
and the data collected by H.E.S.S. allows for the most de-
tailed high energy gamma-ray picture reported to date of
the GC region.
The paper is structured as follows. Section 2 describes

the analysis of the entire available dataset of H.E.S.S. to-
wards Sgr A* from 2004 to 2012. The diffuse TeV emis-
sion is analyzed in the close-by neighbourhood of HESS
J1745-290 in section 3. The contamination of the diffuse
gamma-ray emission to the central source is quantified and
the intrinsic spectrum of the central source is obtained. The
main results are summarized in section 5.

2 H.E.S.S. observations of the Galactic
Center from 2004 to 2012

2.1 Dataset and data analysis
The H.E.S.S. (High Energy Stereoscopic System) array of
Cherenkov telescopes is located in the Khomas Highlands
of Namibia at an altitude of 1800 m. The phase-I system
consists of four identical imaging atmospheric Cherenkov
telescopes. Each of them is equipped with a tesselated mir-
ror of a 107 m2 surface area and a camera of 960 photo-
multipler tubes. The total field of view of H.E.S.S. is 5◦ in
diameter. The H.E.S.S. instrument achieves an angular res-
olution at a 68% containment radius of 0.07◦ per gamma-
ray and an energy resolution of 15% on average. The point-
like source sensitivity is at the level of 2× 10−13cm2s−1

“The H.E.S.S. Galactic Plane Survey –
maps, source catalog and source population”

Figure 4: Profile of the sensitivity map (refer to Figure 6) for b=�0.3�.
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H.E.S.S. Galactic plane survey
Source catalog – Method

Figure 2: Iterative process of the source fitting in the Kookaburra region. Significance map (left) and model and
residual images (small pictures on the right). It can be seen that the 3-source solution leaves a flat residual map

and is therefore preferred.

it is not obvious how to best represent them in an extended source catalog. Therefore we are
investigating e.g. adding a criterion to the catalog construction method that prevents large and
bright sources from decomposing into multiple, strongly overlapping components.

4 Galactic source population and recent discoveries

To date, 67 sources are listed in the catalog of published H.E.S.S. sourcesd. Figure 3 shows a pie
chart of the H.E.S.S. Galactic source population, status February 2013, where the source classi-
fication is taken from TeVCat e. While the largest source class are pulsar wind nebulae (PWN,
orange), followed by supernova remnants, either interacting with a molecular cloud (SNR MC,
yellow) or exhibiting emission from their shell (SNR Shell, light green), there are to date only
a few massive stellar clusters (dark red) and binary systems (light blue) identified as H.E.S.S.
sources. A large part of the H.E.S.S. source population remains ambiguous, therefore Uniden-
tified (dark blue). It should be noted that with further multi-wavelength data the distribution
of this chart will likely change, not only will sources migrate from being unidentified to another
source class, but in some cases possibly even between the defined source classes. Therefore this
chart represents our knowledge at this point in time.

An example of a previously unidentified source that has now been identified as a PWN is
HESS J1303�631, which was the first source classed as unidentified for H.E.S.S. Significant
energy-dependent morphology of this source, as well as the identification of an associated X-ray
PWN from XMM-Newton observations enable identification of the VHE source as an evolved
PWN associated with the pulsar PSR J1301�6305 10.

W49B is an SNR interacting with a molecular cloud, located in the W49 region. W49B
has one of the highest surface brightnesses in radio of all the SNRs of this class in our Galaxy
and is one of the brightest ejecta-dominated SNRs in X-rays. Infrared observations evidenced
that W49B is interacting with molecular clouds and Fermi reported the detection of a coinci-
dent bright, high-energy �-ray source 11. H.E.S.S. detected significant emission from the W49
region, compatible with VHE emission from the SNR W49B 12. The position of the emission is
compatible with the brightest part of the radio emission from the SNR as well as with the GeV
emission. Energy spectra in the GeV and TeV bands are in very good agreement. Given the

dhttp://www.mpi-hd.mpg.de/hfm/HESS/pages/home/sources/
ehttp://tevcat.uchicago.edu/

Example
Preliminary

Rencontres de Moriond 2013: “Charting the TeV Milky Way:
H.E.S.S. Galactic plane survey maps, catalog and source populations”

“Source region” for
spectrum measurement

Figure 1: Illustration of the di↵erent background estimation methods for image and spectral analysis, as well as
the challenges the high density of extended sources in the inner Galaxy poses. Exclusion regions (see Section 2
for details) are shown as grey areas. The field-of-view of 2� radius is illustrated as green solid circles. Left panel:

The adaptive ring background technique. Right panel: The reflected region background technique.

as well as a few interesting examples of recent sources.

2 Maps

In the HGPS, the inner Galaxy has been systematically raster scanned using observation posi-
tions with overlapping fields-of-view, with the main goal of discovering new VHE �-ray sources
and enabling population studies of Galactic source classes as a consequence. Advanced analysis
techniques for background suppression 4,5,6,7 play a very important role in the data analysis.
After calibration and quality selection, a multi-variate analysis technique 4 based on extensive
air shower and image shape parameters is used to discriminate �-ray-like events from cosmic-
ray-induced showers. A minimum image amplitude of 160 photoelectrons is required.

To generate maps, the remaining background is estimated locally by the ring background
technique 8, where for each trial source position (red filled circles) in the field-of-view (of 2�

radius, green circle) the background is estimated from a ring centered on this position (blue
shaded circles), as shown in the left panel of Figure 1. Regions on the sky containing known
VHE �-ray sources (grey areas) are excluded from background estimation. These exclusion
regions are automatically generated from significance maps which are smoothed with a top-hat
function with radii of 0.1�, 0.2� and 0.4�, by thresholding them at the level of 5� and dilating
each excluded pixel by a further 0.1� (small exclusion regions, dark grey) or 0.3� (large exclusion
regions, light grey). For the small exclusion regions, the resulting maps for 0.1� and 0.2� radius
are added, excluding all significant emission from the background but cutting quite close to
the edges of sources. For the large exclusion regions, the resulting maps for 0.1�, 0.2� and 0.4�

radius are added, cutting away more of any emission that is possibly extending into the area
for background estimation. The resulting large exclusion regions, used for the production of
maps, turn out to cover areas of the sky that are comparatively large on the scale of the size
of the field-of-view. Therefore, as illustrated in the left panel of Figure 1, the ring radius is
adaptively enlarged when a large fraction of the ring area overlaps with an excluded region,
until an appropriate ring of the same thickness is reached. The statistically significant value for
each position is then calculated9, by summing the candidate events within a fixed and predefined

Figure 1: Illustration of the di↵erent background estimation methods for image and spectral analysis, as well as
the challenges the high density of extended sources in the inner Galaxy poses. Exclusion regions (see Section 2
for details) are shown as grey areas. The field-of-view of 2� radius is illustrated as green solid circles. Left panel:

The adaptive ring background technique. Right panel: The reflected region background technique.

as well as a few interesting examples of recent sources.

2 Maps

In the HGPS, the inner Galaxy has been systematically raster scanned using observation posi-
tions with overlapping fields-of-view, with the main goal of discovering new VHE �-ray sources
and enabling population studies of Galactic source classes as a consequence. Advanced analysis
techniques for background suppression 4,5,6,7 play a very important role in the data analysis.
After calibration and quality selection, a multi-variate analysis technique 4 based on extensive
air shower and image shape parameters is used to discriminate �-ray-like events from cosmic-
ray-induced showers. A minimum image amplitude of 160 photoelectrons is required.

To generate maps, the remaining background is estimated locally by the ring background
technique 8, where for each trial source position (red filled circles) in the field-of-view (of 2�

radius, green circle) the background is estimated from a ring centered on this position (blue
shaded circles), as shown in the left panel of Figure 1. Regions on the sky containing known
VHE �-ray sources (grey areas) are excluded from background estimation. These exclusion
regions are automatically generated from significance maps which are smoothed with a top-hat
function with radii of 0.1�, 0.2� and 0.4�, by thresholding them at the level of 5� and dilating
each excluded pixel by a further 0.1� (small exclusion regions, dark grey) or 0.3� (large exclusion
regions, light grey). For the small exclusion regions, the resulting maps for 0.1� and 0.2� radius
are added, excluding all significant emission from the background but cutting quite close to
the edges of sources. For the large exclusion regions, the resulting maps for 0.1�, 0.2� and 0.4�

radius are added, cutting away more of any emission that is possibly extending into the area
for background estimation. The resulting large exclusion regions, used for the production of
maps, turn out to cover areas of the sky that are comparatively large on the scale of the size
of the field-of-view. Therefore, as illustrated in the left panel of Figure 1, the ring radius is
adaptively enlarged when a large fraction of the ring area overlaps with an excluded region,
until an appropriate ring of the same thickness is reached. The statistically significant value for
each position is then calculated9, by summing the candidate events within a fixed and predefined

Illustration of the
ring background
estimation method

Illustration of the
reflected background
estimation method

H.E.S.S. FOV

H.E.S.S. FOV

Ring region

Reflected regions

Step 1: source detection and morphology analysis
Simultaneous likelihood fitting on survey maps assuming Gaussian source shape, 
taking the exposure, background (ring method) and point spread function into account.
Step 2: “source region” definition and spectral analysis
For technical reasons spectra have to be measured in “source regions” using a 
different (reflected) background estimation method.
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H.E.S.S. Galactic plane survey
Source catalog – Challenges
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1. High source density in the inner Galaxy
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of0.3 �centered
on
the

CCO
,illustrated

by
the

large
dashed

circle
(r
=
0.3 �)in

Fig.1,chosen
to
fully

enclose
the

em
ission

of
the

rem
nant.The

background
is
estim

ated
us-

ing
the

m
ultiple

reflected-regions
technique

w
here

background
events

are
selected

from
regions

ofthe
sam

e
size

and
shape

as
thesourceregion

and
atequalangulardistancefrom

theobserva-
tion

position
(Berge

etal.2007).The
resulting

spectrum
,show

n
in
Fig.4,is

w
elldescribed

by
a
pow

er-law
m
odel(equivalent

�
2/dof

=
27.7

/35)defined
as
dN
/dE
=
N
0 (E
/E

0 ) �
�
w
here

E
0

is
the

decorrelation
energy

(energy
atw

hich
the

correlation
be-

tw
een

the
slope

and
the

norm
alization

vanishes).Thebestfitpa-
ram

eters,listed
in
Table

1,resultin
an
integrated

1-10
TeV

en-
ergy

flux
of(6.91±

0.75
stat ±

1.38
syst )�

10 �12erg
cm
�2s �1.The

flux
m
easured

here
islow

erthan
w
hathasbeen

derived
initially

in
A
haronian

etal.(2008):(16.2±
3.6

stat ±
3.2

syst )�
10 �12erg

Fig.2.
The

�-ray
excess

and
radio

radial
profiles

are
show

n
w
ith

green
crosses

and
red

squares
respectively.The

best
fits

to
the
�-ray

data
of
a
sphere

and
a
shell

m
odelare

overlaid.
Both

radialprofiles
are

centered
on
the

com
pactcentralobject

(�
J2000
=17h32m

03s,�J2000
=
�34 �45 �18 ��).

Fig.3.N
orm

alized
azim

uthal
�-ray

excess
profile

restricted
to

radiusr�
0.3 �and

using
thesam

ecenterasin
Fig.2.Thebright-

nessdistribution
iscom

patible
w
ith
a
flatprofile.

cm
�2s �1

in
the

sam
e
energy

band.H
ow
ever,the

region
of
ex-

traction
in
the

discovery
paperw

asm
uch

larger(r
=
0.6 �versus

r
=
0.3 �

in
this

paper),including
H
ESS

J1729�345
and

pos-
sibly

som
e
surrounding

di�use
em
ission.A

cross-check
to
de-

rive
the

flux
from

the
SN
R
only

using
the

sam
e
data

setasused
in
A
haronian

etal.(2008)
and

follow
ing

the
originalanalysis

m
ethod

gave
results

consistentw
ith
the

com
plete

data
setpre-

sented
here

thus
confirm

ing
thatthe

flux
di�erence

w
as
m
ainly

due
to
the

choice
ofthe

integration
region.A

pow
er-law

m
odel

w
ith
an
exponentialcuto

�
w
asalso

tested
w
hich

did
notim

prove
the

quality
ofthe

fit(equivalent�
2/dof

=
24.0
/34).

3.3.HESS
J1729�345

A
�-ray

excessofTeV
em
ission

w
asfound

atthebestfitposition
�
J2000
=17h29m

35s,�J2000
=
�34 �32 �22 ��w

ith
a
statisticalerror

of0.035 �and
thesourcew

asthereforelabeled
H
ESS

J1729�345.
Thesourceisextended

beyond
thesize

ofthePSF
(G
aussian

w
idth
�
=
0.12 �±

0.03 �)and
the

region
used

to
derivethe

spec-
tralparam

etersis
show

n
by
the

sm
alldashed

circle
(r
=
0.14 �)

X-ray
TeV

Vela Junior
R

adius = 1 deg
(l, b) = -94, -1.2 deg
Flux = 70%

 C
rab

Spectral index = 2.2

R
X J1713.7-3946

R
adius = 0.5 deg

(l, b) = -13, -0.4 deg
Flux = 70%

 C
rab

Spectral index = 2.0

R
C

W
 86

R
adius = 0.35 deg

(l, b) = -45, -2.3 deg
Flux = 10%

 C
rab

Spectral index = 2.5

SN
 1006

R
adius = 0.25 deg

(l,b) = -33, +15 deg
Flux = 2%

 C
rab

Spectral index = 2.3

H
ESS J1731-347

R
adius = 0.25 deg

(l, b) = -6, -0.6 deg
Flux = 10%

 C
rab

Spectral index = 2.3
The

H
ESS

Collaboration:H
ESS

J1731�347
a
new

TeV
shell-type

SN
R

3

Declination

-34d00m

-34d30m

-35d00m

-35d30m
17h34m

17h30m

R
ight ascension

H
.E.S.S.

PSF

120

100

806040200-20

Fig.1.
TeV

�-ray
excess

m
ap

(1.5 �
�
1.5 �)

of
the

H
ESS

J1731�347
region

sm
oothed

w
ith

a
G
aussian

w
idth
�
=0.04 �.

The
average

H
.E.S.S.PSF

forthe
datasetis

show
n
in
the

inset.
The

regions
used

forthe
spectralanalysis

ofH
ESS

J1731�347
and

H
ESS

J1729�345
are

respectively
represented

by
the

large
and

sm
alldashed

circles.The
position

of
the

centralcom
pact

objectdetected
in
X
-raysisshow

n
w
ith
aw
hite

cross.Thelinear
scale

isin
unitsofexcesscountspersm

oothing
G
aussian

w
idth.

The
transition

betw
een

blue
and

red
in
the

colorscale
is
atthe

levelof4�
.

To
com

pare
the

TeV
m
orphology

w
ith
the

shellseen
in
ra-

dio,the
radio

continuum
m
ap
from

the
ATCA

southern
G
alactic

plane
survey

(SG
PS)

(H
averkorn

etal.2006)
w
as
sm
oothed

to
m
atch

the
H
.E.S.S.spatialresolution

and
a
radialprofile

w
as

extracted
(excluding

pointsources).The
radio

profile
w
as
then

scaled
by
a
norm

alization
factor

calculated
as
the

ratio
of
the

totalnum
ber

of
excess

�-rays
over

the
totalradio

flux
on
the

w
hole

rem
nant.The

resulting
profiles,presented

in
Fig.2,show

an
extended

em
ission

in
�-rayssim

ilarto
thatseen

in
radio.

In
contrastw

ith
RX

J1713.7�3946
w
hich

is
brighterin

the
N
orth-W

estand
SN

1006
thatexhibitsabipolarm

orphology,the
azim

uthalprofileofH
ESS

J1731�347
(see

Fig.3)integrated
for

r
�
0.3 �show

sno
significantdeviation

from
aflatprofile(�

2/dof
=
8.8
/9).

3.2.Spectralresults

The
energy

spectrum
of
the

SN
R
w
as
obtained

by
m
eans

of
a

forw
ard-foldingm

axim
um

likelihood
fit(Piron

etal.2001)from
a
circularregion

of0.3 �centered
on
the

CCO
,illustrated

by
the

large
dashed

circle
(r
=
0.3 �)in

Fig.1,chosen
to
fully

enclose
the

em
ission

of
the

rem
nant.The

background
is
estim

ated
us-

ing
the

m
ultiple

reflected-regions
technique

w
here

background
events

are
selected

from
regions

ofthe
sam

e
size

and
shape

as
thesourceregion

and
atequalangulardistancefrom

theobserva-
tion

position
(Berge

etal.2007).The
resulting

spectrum
,show

n
in
Fig.4,is

w
elldescribed

by
a
pow

er-law
m
odel(equivalent

�
2/dof

=
27.7

/35)defined
as
dN
/dE
=
N
0 (E
/E

0 ) �
�
w
here

E
0

is
the

decorrelation
energy

(energy
atw

hich
the

correlation
be-

tw
een

the
slope

and
the

norm
alization

vanishes).Thebestfitpa-
ram

eters,listed
in
Table

1,resultin
an
integrated

1-10
TeV

en-
ergy

flux
of(6.91±

0.75
stat ±

1.38
syst )�

10 �12erg
cm
�2s �1.The

flux
m
easured

here
islow

erthan
w
hathasbeen

derived
initially

in
A
haronian

etal.(2008):(16.2±
3.6

stat ±
3.2

syst )�
10 �12erg

Fig.2.
The

�-ray
excess

and
radio

radial
profiles

are
show

n
w
ith

green
crosses

and
red

squares
respectively.The

best
fits

to
the
�-ray

data
of
a
sphere

and
a
shell

m
odelare

overlaid.
Both

radialprofiles
are

centered
on
the

com
pactcentralobject

(�
J2000
=17h32m

03s,�J2000
=
�34 �45 �18 ��).

Fig.3.N
orm

alized
azim

uthal
�-ray

excess
profile

restricted
to

radiusr�
0.3 �and

using
thesam

ecenterasin
Fig.2.Thebright-

nessdistribution
iscom

patible
w
ith
a
flatprofile.

cm
�2s �1

in
the

sam
e
energy

band.H
ow
ever,the

region
of
ex-

traction
in
the

discovery
paperw

asm
uch

larger(r
=
0.6 �versus

r
=
0.3 �

in
this

paper),including
H
ESS

J1729�345
and

pos-
sibly

som
e
surrounding

di�use
em
ission.A

cross-check
to
de-

rive
the

flux
from

the
SN
R
only

using
the

sam
e
data

setasused
in
A
haronian

etal.(2008)
and

follow
ing

the
originalanalysis

m
ethod

gave
results

consistentw
ith
the

com
plete

data
setpre-

sented
here

thus
confirm

ing
thatthe

flux
di�erence

w
as
m
ainly

due
to
the

choice
ofthe

integration
region.A

pow
er-law

m
odel

w
ith
an
exponentialcuto

�
w
asalso

tested
w
hich

did
notim

prove
the

quality
ofthe

fit(equivalent�
2/dof

=
24.0
/34).

3.3.HESS
J1729�345

A
�-ray

excessofTeV
em
ission

w
asfound

atthebestfitposition
�
J2000
=17h29m

35s,�J2000
=
�34 �32 �22 ��w

ith
a
statisticalerror

of0.035 �and
thesourcew

asthereforelabeled
H
ESS

J1729�345.
Thesourceisextended

beyond
thesize

ofthePSF
(G
aussian

w
idth
�
=
0.12 �±

0.03 �)and
the

region
used

to
derivethe

spec-
tralparam

etersis
show

n
by
the

sm
alldashed

circle
(r
=
0.14 �)

Fig
ure

1.6.The
4.5

c
urre

ntly
re

so
lve

d
Te

V
she

ll-typ
e

SN
Rs

(the
she

ll-typ
e

m
o

r-
p

ho
lo

g
y

in
RC

W
86

is
no

t
sig

nific
a

nt).
N

o
nthe

rm
a

lX-ra
y

sync
hro

tro
n

e
m

is-
sio

n
ha

s
b

e
e

n
d

e
te

c
te

d
fro

m
a

llo
f

the
m

,
w

hic
h

in
a

llc
a

se
s

m
a

tc
he

s
the

Te
V

m
o

rp
ho

lo
g

y
w

e
ll(a

fte
rta

king
the

d
iffe

re
nta

ng
ula

rre
so

lutio
n

o
fthe

im
-

a
g

e
s

into
a

c
c

o
unt).The

q
uo

te
d

flux
w

a
s

c
o

m
p

ute
d

b
y

c
o

m
p

a
ring

the
inte

-
g

ra
lflux

a
b

ove
1

Te
V

to
the

C
ra

b
(100%

C
ra

b
=

2.
1

·
1
0 �

1
1

c
m

�
2s �

1

(M
eye

r
e

t
a

l.,
2010)).

The
fo

ur
im

a
g

e
s

o
n

the
le

ft
ha

ve
b

e
e

n
ta

ke
n

fro
m

H
into

n
a

nd
H

o
fm

a
nn

(2009)a
nd

the
sp

e
c

tra
linfo

rm
a

tio
n

fro
m

H
into

n
a

nd
H

o
fm

a
nn

(2009,?);A
ha

ro
nia

n
e

ta
l.(2009b

,b
,b

).
R

i
g

h
t
:In

H
ESS

J1731-347
(H

ESS
C

o
lla

b
-

o
ra

tio
n

a
nd

A
b

ra
m

ow
ski,2011)the

she
ll-typ

e
m

o
rp

ho
lo

g
y

c
o

uld
re

c
e

ntly
b

e
id

e
ntifie

d
.

The
c

o
m

m
o

n
m

e
tho

d
use

d
to

e
sta

b
lish

she
ll-typ

e
m

o
rp

ho
lo

g
y

is
to

fit
the

ra
d

ia
lp

ro
file

(show
n

in
the

low
e

r
rig

ht)
w

ith
a

she
lla

nd
a

c
e

nte
r-

fille
d

m
o

d
e

l(suc
h

a
s

sp
he

re
o

r
G

a
uss)

a
nd

te
st

if
the

she
ll-typ

e
m

o
d

e
lis

sig
nific

a
ntly

m
o

re
like

ly.

22

Vela X
PSR

 B
0833-45

M
SH

 15-52
PSR

 B
1509-58

H
ESS J1420-607

PSR
 J1420-6048

     H
ESS J1418-609

     PSR
 J1418–6058

H
ESS J1825-137

PSR
 J1826-1334

E
N
E
R
G
Y
D
E
PE
N
D
E
N
T
M
O
R
PH
O
L
O
G
Y
IN
H
ESS

J1825–137

The
vastly

differentsizes
of
the

em
ission

region
in
the

tw
o
w
avebands

prevents
at
first

glance
a

direct
identification

as
a
counterpart,

since
the

m
orphology

can
notbe

m
atched

betw
een

X
-rays

and
gam

m
a-rays.

A
s
w
ill
be

explained
in
the

follow
ing,

the
different

sizes
can

be
explained

in
a
tim
e-dependentleptonic

m
odel

by
different

cooling
tim
escales

of
the

X
-ray

and
of
the

V
H
E

gam
m
a-ray

em
itting

regions.Caution
should

how
-

everbeused,ifsuch
an
association

servesasatem
-

plate
forotherunidentified

H
.E.S.S.V

H
E
gam

m
a-

ray
sourcesw

ith
an
energeticpulsarin

thevicinity,
in
casesin

w
hich

no
X
-ray

PW
N
hasbeen

detected
so
far.

O
bservationaldata

CO
-O
bservationsperform

ed
in
the

com
posite

sur-
vey

[5]
show

a
dense

m
olecularcloud

in
the

dis-
tance

band
betw

een
3.5

and
4
kpc

to
the

north
ofPSR

B1823–13
(located

at⇠
4
kpc)[6].

This
cloud

seem
s
to
support

the
picture

of
an
offset

PW
N
and

could
explain

w
hy
the

X
-ray

and
V
H
E

em
ission

isshifted
to
thesouth

ofthepulsar.G
iven

the
relatively

high
gam

m
a-ray

flux
and

the
rather

large
distance

ofthe
system

of4
kpc

(in
com

par-
ison

to
the

Crab),the
required

gam
m
a-ray

lum
i-

nosity
L

�
⇠

3
⇥

1
0

3
5

e
r
g
/
s
is
com

parable
to
the

Crab
lum

inosity.The
spin-dow

n
lum

inosity
ofthe

pulsaris,how
ever,tw

o
ordersofm

agnitude
low

er
than

the
Crab

spin-dow
n
lum

inosity.
A
ssum

ing
the

distance
of⇠

4
kpc

is
correctthis

show
s
that

the
efficiency

of
converting

spin-dow
n
pow

er
to

gam
m
a-ray

lum
inosity

m
ustbe

m
uch

higherthan
in
theCrab

N
ebula,notunexpected,given

thelarge
m
agnetic

field
in
the

Crab
N
ebula.

D
etailed

tim
e-

dependentm
odelling

of
the

source
show

s
indeed

that(especially
below

⇠
1TeV

)the
energy

injec-
tion

into
thesystem

m
usthavebeen

aboutan
order

of
m
agnitude

higher
in
the

past.
Potentially

the
spin-dow

n
pow

er
of
the

pulsar
w
as
significantly

higher
in
the

early
stage

of
the

pulsar
evolution.

Forthe
low

erenergy
end

ofthe
H
.E.S.S.spectrum

and
for

m
odest

m
agnetic

fields
of
a
few

µG
as

suggested
by
the

large
V
H
E
gam

m
a-ray

flux,the
electron

lifetim
es
becom

e
com

parable
to
the

pul-
sarage

and
therefore

“relic”
electrons

released
in

the
early

history
ofthe

pulsarcan
survive

untilto-
day

and
providethe

required
lum

inosity.Itshould

Figure1:Three-colourim
ageshow

ing
thegam

m
a-

ray
em
ission

in
differentenergy

bands
(red:

0.2-
0.8

TeV,green
0.8-2.5

TeV
and

blue:
above

2.5
TeV

).Thedifferentgam
m
a-rayenergy

bandsshow
a
shrinking

w
ith
increasing

energy
aw
ay
from

the
pulsarPSR

B1823–13.

be
noted

thatto
this

date
no
sensitive

X
-ray

ob-
servation

ofthe
region

coinciding
w
ith
the

peak
of

the
V
H
E
gam

m
a-ray

em
ission

hasbeen
perform

ed
and

alow
surface-brightnessextension

to
thesouth

ofthe
X
-ray

PW
N
found

by
G
aensleretal.[7]re-

m
ains

an
interesting

possiblility
thatshould

even-
tually

be
tested.

Energy
dependentm

orphology

G
iven

the
large

data
setw

ith
nearly

20,000
�-ray

excess
events,a

spatially
resolved

spectralanaly-
sis
ofH

ESS
J1825–137

could
be
perform

ed.
For

the
the

first
tim
e
V
H
E

�-ray
astronom

y
an
en-

ergy
dependent

m
orphology

(see
Figure

1)
w
as

established
[1]

in
w
hich

the
size

of
the

em
ission

region
decreases

w
ith

increasing
energy.

This
shrinking

size
w
ith

increasing
energy

is
equiva-

lentto
the

statem
entof

a
steepening

ofthe
spec-

tralindex
aw
ay
from

the
pulsar.

The
spectrum

in
H
ESS

J1825–137
changesfrom

a
ratherhard

pho-
ton

index
⇠

2
close

to
the

pulsarto
a
softervalue

of⇠
2
.
5
ata

distance
of

1

�
aw
ay
from

the
pulsar.

X-ray
TeV

H
ESS J1825-137

H
ESS 1303-631

A
N

RV
385-A

A
47-13

A
R

I
22

July
2009

4:12

abcd

Figure
9

Five
γ

-ray
PW

N
candidatesin

X
-rays

(left)and
TeV

γ
rays

(right).(a)Vela
X

,
(b)M

SH
15−

52,(c)the
K

3
and

R
abbitPW

N
e

in
the

K
ookaburra

N
ebula,and

(d)G
18.0−

0.7/H
E

SS
J1825−

137.T
he

γ
-ray

im
agesare

allm
ade

using
H

E
SS;see

A
haronian

etal.
(2005a,2006d,2006e,
2006g).Publicly
available

X
-ray

data
have

been
reprocessed

to
produce

the
X

-ray
im

ages(a)R
O

SAT,
(b)C

handra,(c)X
M

M
and

C
handra

(w
hite

inset),and
(d)X

M
M

.
T

he
positionsofthe

associated
radio

pulsarsare
show

n
w

ith
black

crosses.T
he

w
hite

scale
barsare

0.5 �
long.

544
H

inton·
H

ofm
ann

Annu. Rev. Astro. Astrophys. 2009.47:523-565. Downloaded from arjournals.annualreviews.org
by Max-Planck-Gesellschaft on 08/29/09. For personal use only.

Fig
ure

1.7.
Pulsa

r
w

ind
ne

b
ula

e
d

e
te

c
te

d
b

y
H

ESS
a

t
Te

V
e

ne
rg

ie
s.

Ve
la

X
(A

ha
ro

nia
n

e
t

a
l.,

2006b
)

a
nd

M
SH

15-52
(A

ha
ro

nia
n

e
t

a
l.,

2005c
)

ha
ve

b
e

e
n

id
e

ntifie
d

via
m

a
tc

hing
X-ra

y
sync

hro
tro

n
PW

N
e

,
show

n
o

n
the

le
ft.

In
the

c
a

se
o

f
H

ESS
J1825-137

(A
ha

ro
nia

n
e

t
a

l.,
2006c

)
the

Te
V

ne
b

ula
is

m
uc

h
m

o
re

e
xte

nd
e

d
tha

n
the

X-ra
y

ne
b

ula
.

H
ow

eve
r,

a
s

show
n

in
the

c
o

lo
r

im
a

g
e

o
n

the
rig

ht,
the

Te
V

ne
b

ula
b

e
c

o
m

e
s

sm
a

lle
r

a
t

hig
he

r
e

n-
e

rg
ie

s
a

nd
the

e
m

issio
n

c
e

ntro
id

shifts
tow

a
rd

s
the

p
ulsa

r
PSR

J1826-1334.
Sinc

e
the

X-ra
y

sync
hro

tro
n

e
m

itting
e

le
c

tro
ns

ha
ve

eve
n

hig
he

r
e

ne
rg

ie
s

tha
n

the
Te

V
IC

e
m

itting
e

le
c

tro
ns

a
nd

the
ne

b
ula

e
in

b
o

th
b

a
nd

s
e

xte
nd

to
the

so
uth,

it
is

a
ssum

e
d

tha
t

b
o

th
the

X-ra
y

a
nd

g
a

m
m

a
-ra

y
so

urc
e

a
re

the
PW

N
g

e
ne

ra
te

d
b

y
the

p
ulsa

r.
Re

c
e

ntly
sig

nific
a

nt
e

ne
rg

y-d
e

p
e

nd
e

nt
m

o
rp

ho
lo

g
y

w
a

s
fo

und
in

a
se

c
o

nd
Te

V
so

urc
e

,
H

ESS
1303-631

(A
ha

ro
nia

n
e

t
a

l.,2005d
;d

e
N

a
uro

is,2011),a
g

a
in

w
ith

the
hig

h-e
ne

rg
y

e
m

issio
n

re
g

io
n

sm
a

lle
r

a
nd

c
lo

se
r

to
PSR

J1301-6305.
The

tw
o

so
urc

e
s

H
ESS

J1420-607
a

nd
H

ESS
J1418-609

in
the

Ko
o

ka
b

urra
c

o
m

p
le

x
(A

ha
ro

nia
n

e
t

a
l.,

2006d
)

a
re

ve
ry

g
o

o
d

c
a

nd
id

a
te

PW
N

e
.

They
ha

ve
c

o
rre

sp
o

nd
ing

yo
ung

a
nd

e
ne

r-
g

e
tic

p
ulsa

rs
a

nd
sync

hro
tro

n
X-ra

y
ne

b
ula

e
,

a
nd

no
o

the
r

via
b

le
c

o
un-

te
rp

a
rt

(suc
h

a
s

a
SN

R
o

r
m

o
le

c
ula

r
c

lo
ud

)
w

a
s

fo
und

.
Fig

ure
s

o
n

the
le

ft
ta

ke
n

fro
m

H
into

n
a

nd
H

o
fm

a
nn

(2009).The
c

o
lo

rim
a

g
e

o
fH

ESS
J1303-631

is
fro

m
w
w
w
.
m
p
i
-
h
d
.
m
p
g
.
d
e
/
h
f
m
/
H
E
S
S
/
p
a
g
e
s
/
h
o
m
e
/
s
o
m
/
2
0
1
1
/
0
1,the

o
ne

o
fH

ESS
J1825-137

fro
m

The
H

.E.S.S
C

o
lla

b
o

ra
tio

n:S.Funk
e

ta
l.(2007).

23

2. Unknown source morphologies.

Shell-type
supernova remnants

Pulsar wind nebulae
16Monday, August 26, 13



Source populations
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In this talk only time to look at PWNe.
For more info see e.g. this talk:

Wed 9:00 am
Emma de Ona-Wilhelmi
“Galactic TeV overview”
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Pulsar wind nebula population

Vela X
PSR B0833-45

MSH 15-52
PSR B1509-58

HESS J1420-607
PSR J1420-6048

     HESS J1418-609
     PSR J1418–6058

HESS J1825-137
PSR J1826-1334

ENERGY DEPENDENT MORPHOLOGY IN HESS J1825–137

The vastly different sizes of the emission region
in the two wavebands prevents at first glance a
direct identification as a counterpart, since the
morphology can not be matched between X-rays
and gamma-rays. As will be explained in the
following, the different sizes can be explained
in a time-dependent leptonic model by different
cooling timescales of the X-ray and of the VHE
gamma-ray emitting regions. Caution should how-
ever be used, if such an association serves as a tem-
plate for other unidentified H.E.S.S. VHE gamma-
ray sources with an energetic pulsar in the vicinity,
in cases in which no X-ray PWN has been detected
so far.

Observational data

CO-Observations performed in the composite sur-
vey [5] show a dense molecular cloud in the dis-
tance band between 3.5 and 4 kpc to the north
of PSRB1823–13 (located at ⇠ 4 kpc) [6]. This
cloud seems to support the picture of an offset
PWN and could explain why the X-ray and VHE
emission is shifted to the south of the pulsar. Given
the relatively high gamma-ray flux and the rather
large distance of the system of 4 kpc (in compar-
ison to the Crab), the required gamma-ray lumi-
nosity L� ⇠ 3 ⇥ 10

35
erg/s is comparable to the

Crab luminosity. The spin-down luminosity of the
pulsar is, however, two orders of magnitude lower
than the Crab spin-down luminosity. Assuming
the distance of ⇠ 4 kpc is correct this shows that
the efficiency of converting spin-down power to
gamma-ray luminosity must be much higher than
in the Crab Nebula, not unexpected, given the large
magnetic field in the Crab Nebula. Detailed time-
dependent modelling of the source shows indeed
that (especially below ⇠ 1TeV) the energy injec-
tion into the system must have been about an order
of magnitude higher in the past. Potentially the
spin-down power of the pulsar was significantly
higher in the early stage of the pulsar evolution.
For the lower energy end of the H.E.S.S. spectrum
and for modest magnetic fields of a few µG as
suggested by the large VHE gamma-ray flux, the
electron lifetimes become comparable to the pul-
sar age and therefore “relic” electrons released in
the early history of the pulsar can survive until to-
day and provide the required luminosity. It should

Figure 1: Three-colour image showing the gamma-
ray emission in different energy bands (red: 0.2-
0.8 TeV, green 0.8-2.5 TeV and blue: above 2.5
TeV). The different gamma-ray energy bands show
a shrinking with increasing energy away from the
pulsar PSRB1823–13.

be noted that to this date no sensitive X-ray ob-
servation of the region coinciding with the peak of
the VHE gamma-ray emission has been performed
and a low surface-brightness extension to the south
of the X-ray PWN found by Gaensler et al. [7] re-
mains an interesting possiblility that should even-
tually be tested.

Energy dependent morphology

Given the large data set with nearly 20,000 �-ray
excess events, a spatially resolved spectral analy-
sis of HESS J1825–137 could be performed. For
the the first time VHE �-ray astronomy an en-
ergy dependent morphology (see Figure 1) was
established [1] in which the size of the emission
region decreases with increasing energy. This
shrinking size with increasing energy is equiva-
lent to the statement of a steepening of the spec-
tral index away from the pulsar. The spectrum in
HESS J1825–137 changes from a rather hard pho-
ton index ⇠ 2 close to the pulsar to a softer value
of ⇠ 2.5 at a distance of 1

� away from the pulsar.

X-ray TeV

HESS J1825-137

HESS 1303-631

ANRV385-AA47-13 ARI 22 July 2009 4:12

a

b

c

d

Figure 9
Five γ -ray PWN
candidates in X-rays
(left) and TeV γ rays
(right). (a) Vela X,
(b) MSH 15−52, (c) the
K3 and Rabbit PWNe
in the Kookaburra
Nebula, and
(d ) G18.0−0.7/HESS
J1825−137. The γ -ray
images are all made
using HESS; see
Aharonian et al.
(2005a, 2006d, 2006e,
2006g). Publicly
available X-ray data
have been reprocessed
to produce the X-ray
images (a) ROSAT,
(b) Chandra, (c) XMM
and Chandra (white
inset), and (d ) XMM.
The positions of the
associated radio
pulsars are shown with
black crosses. The
white scale bars are
0.5� long.
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Figure 1.7. Pulsar wind nebulae detected by HESS at TeV energies. Vela X
(Aharonian et al., 2006b) and MSH 15-52 (Aharonian et al., 2005c) have
been identified via matching X-ray synchrotron PWNe, shown on the left.
In the case of HESS J1825-137 (Aharonian et al., 2006c) the TeV nebula is
much more extended than the X-ray nebula. However, as shown in the
color image on the right, the TeV nebula becomes smaller at higher en-
ergies and the emission centroid shifts towards the pulsar PSR J1826-1334.
Since the X-ray synchrotron emitting electrons have even higher energies
than the TeV IC emitting electrons and the nebulae in both bands extend
to the south, it is assumed that both the X-ray and gamma-ray source are
the PWN generated by the pulsar. Recently significant energy-dependent
morphology was found in a second TeV source, HESS 1303-631 (Aharonian
et al., 2005d; de Naurois, 2011), again with the high-energy emission region
smaller and closer to PSR J1301-6305. The two sources HESS J1420-607 and
HESS J1418-609 in the Kookaburra complex (Aharonian et al., 2006d) are
very good candidate PWNe. They have corresponding young and ener-
getic pulsars and synchrotron X-ray nebulae, and no other viable coun-
terpart (such as a SNR or molecular cloud) was found. Figures on the left
taken from Hinton and Hofmann (2009). The color image of HESS J1303-631 is
from www.mpi-hd.mpg.de/hfm/HESS/pages/home/som/2011/01, the one
of HESS J1825-137 from The H. E. S. S Collaboration: S. Funk et al. (2007).
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For the lower energy end of the H.E.S.S. spectrum
and for modest magnetic fields of a few µG as
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sar age and therefore “relic” electrons released in
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day and provide the required luminosity. It should
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servation of the region coinciding with the peak of
the VHE gamma-ray emission has been performed
and a low surface-brightness extension to the south
of the X-ray PWN found by Gaensler et al. [7] re-
mains an interesting possiblility that should even-
tually be tested.
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Given the large data set with nearly 20,000 �-ray
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sis of HESS J1825–137 could be performed. For
the the first time VHE �-ray astronomy an en-
ergy dependent morphology (see Figure 1) was
established [1] in which the size of the emission
region decreases with increasing energy. This
shrinking size with increasing energy is equiva-
lent to the statement of a steepening of the spec-
tral index away from the pulsar. The spectrum in
HESS J1825–137 changes from a rather hard pho-
ton index ⇠ 2 close to the pulsar to a softer value
of ⇠ 2.5 at a distance of 1

� away from the pulsar.

X-ray TeV

HESS J1825-137

HESS 1303-631

ANRV385-AA47-13 ARI 22 July 2009 4:12

a

b

c

d

Figure 9
Five γ -ray PWN
candidates in X-rays
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(right). (a) Vela X,
(b) MSH 15−52, (c) the
K3 and Rabbit PWNe
in the Kookaburra
Nebula, and
(d ) G18.0−0.7/HESS
J1825−137. The γ -ray
images are all made
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Aharonian et al.
(2005a, 2006d, 2006e,
2006g). Publicly
available X-ray data
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to produce the X-ray
images (a) ROSAT,
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inset), and (d ) XMM.
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Figure 1.7. Pulsar wind nebulae detected by HESS at TeV energies. Vela X
(Aharonian et al., 2006b) and MSH 15-52 (Aharonian et al., 2005c) have
been identified via matching X-ray synchrotron PWNe, shown on the left.
In the case of HESS J1825-137 (Aharonian et al., 2006c) the TeV nebula is
much more extended than the X-ray nebula. However, as shown in the
color image on the right, the TeV nebula becomes smaller at higher en-
ergies and the emission centroid shifts towards the pulsar PSR J1826-1334.
Since the X-ray synchrotron emitting electrons have even higher energies
than the TeV IC emitting electrons and the nebulae in both bands extend
to the south, it is assumed that both the X-ray and gamma-ray source are
the PWN generated by the pulsar. Recently significant energy-dependent
morphology was found in a second TeV source, HESS 1303-631 (Aharonian
et al., 2005d; de Naurois, 2011), again with the high-energy emission region
smaller and closer to PSR J1301-6305. The two sources HESS J1420-607 and
HESS J1418-609 in the Kookaburra complex (Aharonian et al., 2006d) are
very good candidate PWNe. They have corresponding young and ener-
getic pulsars and synchrotron X-ray nebulae, and no other viable coun-
terpart (such as a SNR or molecular cloud) was found. Figures on the left
taken from Hinton and Hofmann (2009). The color image of HESS J1303-631 is
from www.mpi-hd.mpg.de/hfm/HESS/pages/home/som/2011/01, the one
of HESS J1825-137 from The H. E. S. S Collaboration: S. Funk et al. (2007).
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Correlation of HGPS TeV sources and pulsars

Stefan Klepser . Pulsar Wind Nebulae . ICRC . Rio 2013  

Correlation of TeV 
sources and Pulsars
■ High-Edot pulsars tend to have 

TeV signals within ≲ 0.5°

■ No correlation beyond chance 
coincidences below 1035 erg/s

■ Very simple (low-bias) 
preselection of candiates
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Preselection result

33RD INTERNATIONAL COSMIC RAY CONFERENCE, RIO DE JANEIRO 2013
THE ASTROPARTICLE PHYSICS CONFERENCE

Spectral analysis of the Galactic Center emission at very-high-energy gamma-
rays with H.E.S.S
AION VIANA1, EMMANUEL MOULIN2, FOR THE H.E.S.S. COLLABORATION.
1 Max-Planck-Institut für Kernphysik, P.O. Box 103980, D 69029 412 Heidelberg, Germany
2 Commissariat l’Energie Atomique et aux Energies Alternatives, Institut de recherche sur les lois fondamentales de l’Univers,
Service de Physique des Particules, Centre de Saclay, F-91191 Gif-sur-Yvette, France

aion.viana@mpi-hd.mpg.de
emmanuel.moulin@cea.fr

Abstract: The Galactic Centre region has been observed by the complete H.E.S.S.-I array of ground-based
Cherenkov telescopes since 2004 leading to the detection of the very-high-energy (VHE, E ≥ 100 GeV) gamma-
ray source HESS J1745-290 coincident in position with the supermassive black hole Sgr A*. A TeV gamma-ray
diffuse emision has been detected along the Galactic ridge, very likely to be related to cosmic-ray interactions
in giant molecular clouds of the Central Molecular Zone. We report here on a spectral morphology study of the
inner 50 pc of the Galactic Centre region using the full data set of 2004-2012 observations . The contamination
from diffuse emission to HESS J1745-290 is subtracted which allows to recover the intrinsic spectrum of the
central source. The intrinsic source spectrum is well described by a power-law spectrum with an exponential
energy cut-off at ∼ 7 TeV.

Keywords: Galactic Center, gamma rays, HESS J1745-290, Diffuse emission

1 Introduction
An impressive observational activity developed in the
Galactic Center (GC) region since the detection of a
gamma-ray emission from the direction of the Galactic
Center by the EGRET satellite (3EG J1746-2852, [1]).
Observations with imaging atmospheric Cherenkov tele-
scopes soon after gave rise to the detection of an emission
in the very-high-energy (VHE, E > 100 GeV) gamma-
ray regime by the CANGAROO [2], VERITAS [3],
H.E.S.S. [4] andMAGIC [5]. The Fermi-LAT satellite then
detected a central source, 1FGL J1745.6-2900, coincident
in position with Sgr A* [6], though no firm conclusion
does exist about the association of the Fermi-LAT source
with the VHE gamma-ray source due to the presence of
a strong diffuse gamma-ray emission in the same energy
range. The observations of the GC region with the H.E.S.S.
instrument led to the detection of a point-like source of
VHE gamma-rays, HESS J1745-290, with an unprecented
accuracy in the TeV energy range thanks to its location in
the southern hemisphere, its wide field of view and the ex-
cellent hardware performances. While spatially coincident
with the supermassive black hole Sgr A*, the position of
HESS J1745-290 was still compatible with the supernova
remnant Sgr A East, and the plerion G359.95-0.04, despite
the angular resolution of the H.E.S.S. instrument of about
6′. A larger exposure on the GC region revealed a ridge
of diffuse emission extending along the Galactic plane for
about 2◦ in Galactic longitude, which was found to be spa-
tially correlated to giant molecular clouds located in the
central molecular zone [7]. The strong correlation between
the morphology of the diffuse gamma-ray emission and
the density of molecular clouds indicates the presence of a
proton accelerator in the GC region, since energetic proton
interactions with the cloud material would give rise to the
observed gamma-ray flux via π0 decays. After a careful
investigation of the pointing systematics of the H.E.S.S.
telescopes, the systematic error on the centroid position of

HESS J1745-290 emission was reduced to 13′′, allowing
the exclusion of Sgr A East supernova remnant as the main
counterpart of the VHE emission [8]. The very nature of
this VHE central emission remains still unknown, leaving
Sgr A* [9, 10], G359.95-0.04 [11, 12] and the inner 10
pc diffuse emission around Sgr A* [13] as plausible con-
tributing sources for the observed emission. The H.E.S.S.
experiment has been taking observations of the Galactic
Center region for nine years with the full telescope array
and the data collected by H.E.S.S. allows for the most de-
tailed high energy gamma-ray picture reported to date of
the GC region.
The paper is structured as follows. Section 2 describes

the analysis of the entire available dataset of H.E.S.S. to-
wards Sgr A* from 2004 to 2012. The diffuse TeV emis-
sion is analyzed in the close-by neighbourhood of HESS
J1745-290 in section 3. The contamination of the diffuse
gamma-ray emission to the central source is quantified and
the intrinsic spectrum of the central source is obtained. The
main results are summarized in section 5.

2 H.E.S.S. observations of the Galactic
Center from 2004 to 2012

2.1 Dataset and data analysis
The H.E.S.S. (High Energy Stereoscopic System) array of
Cherenkov telescopes is located in the Khomas Highlands
of Namibia at an altitude of 1800 m. The phase-I system
consists of four identical imaging atmospheric Cherenkov
telescopes. Each of them is equipped with a tesselated mir-
ror of a 107 m2 surface area and a camera of 960 photo-
multipler tubes. The total field of view of H.E.S.S. is 5◦ in
diameter. The H.E.S.S. instrument achieves an angular res-
olution at a 68% containment radius of 0.07◦ per gamma-
ray and an energy resolution of 15% on average. The point-
like source sensitivity is at the level of 2× 10−13cm2s−1
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Figure 3: Spin-down power Ė plotted against characteris-
tic age of previously identified PWNe (dark red squares)
and preliminary preselection candidates in this work (yel-
low circles). The grey diamonds are additional PWNe that
are not in the HGPS, and the grey dots are other ATNF pul-
sars for which no TeV counterpart has been detected.

The measurements available are radii defined as the
width σ of a two-dimensional Gaussian function instead of
a sphere radius. This σ can only be measured if the PWN
is bigger than the minimum resolvable extension, which
depends on the exposure time and may generally be less
than the gamma-ray point spread function. Also, the source
has to be sufficiently smaller than the radius of the field of
view, such that a background subtraction remains possible.
For H.E.S.S., this limits the range of detectable extensions
to about 0.03◦ to 0.6◦.
Despite this observational bias and theoretical uncer-

tainty, a rough trend can be observed in Fig. 4. The evo-
lution of radii roughly matches the expected RPWN ∼ t0.3
for evolved PWNe that are in interaction with the SNR re-
verse shock. The model curves in our figures take into ac-
count the conversion between true and characteristic age,
see [7, 8].

3.3 Efficiency Evolution
The TeV efficiency, defined as the ratio of TeV luminos-
ity and pulsar spin-down power, is often used to argue the
plausibility of a PWN association. It is, however, a difficult
matter, because the TeV emission is produced by a popula-
tion of electrons that is summed up over the whole evolu-
tion of a PWN, while the spin-down power is a momentary
property of a pulsar. It is therefore expected that this appar-
ent efficiency of a PWN can increase with time or even ex-
ceed unity.
Figure Fig. 5 shows the evolution of efficiency with

characteristic age. Thanks to the many new upper limits
we extract from the HGPS skymap, it is clear that while
some candidates may exceed an efficiency of 1, most of
the PWNe do not reach such a high efficiency. From the
modelings we show, one can see that the braking index n,
which defines how quickly Ė decreases with time, proba-
bly plays an important role in the efficiency evolution. A
lower braking index of n = 2 leads to less outflow than
n = 3 and therefore less efficiency. On the other hand, we
also find that an even lower n can lead to an artificial boost
in efficiency by letting the momentary Ė drop very rapidly

Figure 4: Dependence of measured PWN extensions on
characteristic age. The breaks in the models happen at the
time when the PWN encounters the SNR reverse shock,
which is assumed to happen at 5kyr (true age, as opposed
to characteristic age which is shown in the plot).

Figure 5: PWN efficiency vs. characteristic age. The yel-
low limits are likely to enclose the respective PWN,
whereas the grey limits are likely to limit only the inner
core of it, so the PWN is not fully contained.

(not displayed here). A high efficiency may therfore either
indicate a productive particle generation, or just a fast de-
crease of the pulsar Ė .

4 Summary and Outlook
We presented first excerpts of a study of the TeV PWNe
population revealed by the H.E.S.S. Galactic Plane Survey.
The study is to be completed using the final catalog, and
will contain a discussion of the PWN candidates and more
conclusions on the present theoretical understanding of
pulsar wind nebulae.
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PWN Evolution in a Nutshell
Free expansion Reverse shock

interaction
Relic stage

SNR

PWN

▪ Easy & independent

▪ R ~ t6/5

▪ All the Crab wisdom, e.g.
▪ Kennel & Coroniti 1984

▪ Martín++, 2012

▪ ...

▪ Messy & depending on SNR 
development

▪ Oscillative reverbations

▪ Analytically R ~ t0.3

▪ Only over-idealized and/or 
numerical wisdom
▪ Swaluw++ 2001,2004

▪ ...

Pulsar

▪ More messy & more 
depending on SNR dev. & 
surroundings

▪ R ~ undefined

▪ Only case-by-case wisdom

2-6 kyr 20-100 kyr?
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PWN Evolution in a Nutshell

■ Most TeV PWNe are probably in 
RS interaction

▪ Difficult for population synthesis...

8

Char.

• Most TeV PWNe are probably in the 
reverse shock interaction phase.

• This makes a population study difficult, 
because PWN nebula evolution will 
depend on environment (gas, magnetic 
field, supernova remnant evolution, ...)
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Figure 3: Spin-down power Ė plotted against characteris-
tic age of previously identified PWNe (dark red squares)
and preliminary preselection candidates in this work (yel-
low circles). The grey diamonds are additional PWNe that
are not in the HGPS, and the grey dots are other ATNF pul-
sars for which no TeV counterpart has been detected.

The measurements available are radii defined as the
width σ of a two-dimensional Gaussian function instead of
a sphere radius. This σ can only be measured if the PWN
is bigger than the minimum resolvable extension, which
depends on the exposure time and may generally be less
than the gamma-ray point spread function. Also, the source
has to be sufficiently smaller than the radius of the field of
view, such that a background subtraction remains possible.
For H.E.S.S., this limits the range of detectable extensions
to about 0.03◦ to 0.6◦.
Despite this observational bias and theoretical uncer-

tainty, a rough trend can be observed in Fig. 4. The evo-
lution of radii roughly matches the expected RPWN ∼ t0.3
for evolved PWNe that are in interaction with the SNR re-
verse shock. The model curves in our figures take into ac-
count the conversion between true and characteristic age,
see [7, 8].

3.3 Efficiency Evolution
The TeV efficiency, defined as the ratio of TeV luminos-
ity and pulsar spin-down power, is often used to argue the
plausibility of a PWN association. It is, however, a difficult
matter, because the TeV emission is produced by a popula-
tion of electrons that is summed up over the whole evolu-
tion of a PWN, while the spin-down power is a momentary
property of a pulsar. It is therefore expected that this appar-
ent efficiency of a PWN can increase with time or even ex-
ceed unity.
Figure Fig. 5 shows the evolution of efficiency with

characteristic age. Thanks to the many new upper limits
we extract from the HGPS skymap, it is clear that while
some candidates may exceed an efficiency of 1, most of
the PWNe do not reach such a high efficiency. From the
modelings we show, one can see that the braking index n,
which defines how quickly Ė decreases with time, proba-
bly plays an important role in the efficiency evolution. A
lower braking index of n = 2 leads to less outflow than
n = 3 and therefore less efficiency. On the other hand, we
also find that an even lower n can lead to an artificial boost
in efficiency by letting the momentary Ė drop very rapidly

Figure 4: Dependence of measured PWN extensions on
characteristic age. The breaks in the models happen at the
time when the PWN encounters the SNR reverse shock,
which is assumed to happen at 5kyr (true age, as opposed
to characteristic age which is shown in the plot).

Figure 5: PWN efficiency vs. characteristic age. The yel-
low limits are likely to enclose the respective PWN,
whereas the grey limits are likely to limit only the inner
core of it, so the PWN is not fully contained.

(not displayed here). A high efficiency may therfore either
indicate a productive particle generation, or just a fast de-
crease of the pulsar Ė .

4 Summary and Outlook
We presented first excerpts of a study of the TeV PWNe
population revealed by the H.E.S.S. Galactic Plane Survey.
The study is to be completed using the final catalog, and
will contain a discussion of the PWN candidates and more
conclusions on the present theoretical understanding of
pulsar wind nebulae.
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view, such that a background subtraction remains possible.
For H.E.S.S., this limits the range of detectable extensions
to about 0.03◦ to 0.6◦.
Despite this observational bias and theoretical uncer-

tainty, a rough trend can be observed in Fig. 4. The evo-
lution of radii roughly matches the expected RPWN ∼ t0.3
for evolved PWNe that are in interaction with the SNR re-
verse shock. The model curves in our figures take into ac-
count the conversion between true and characteristic age,
see [7, 8].
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The TeV efficiency, defined as the ratio of TeV luminos-
ity and pulsar spin-down power, is often used to argue the
plausibility of a PWN association. It is, however, a difficult
matter, because the TeV emission is produced by a popula-
tion of electrons that is summed up over the whole evolu-
tion of a PWN, while the spin-down power is a momentary
property of a pulsar. It is therefore expected that this appar-
ent efficiency of a PWN can increase with time or even ex-
ceed unity.
Figure Fig. 5 shows the evolution of efficiency with

characteristic age. Thanks to the many new upper limits
we extract from the HGPS skymap, it is clear that while
some candidates may exceed an efficiency of 1, most of
the PWNe do not reach such a high efficiency. From the
modelings we show, one can see that the braking index n,
which defines how quickly Ė decreases with time, proba-
bly plays an important role in the efficiency evolution. A
lower braking index of n = 2 leads to less outflow than
n = 3 and therefore less efficiency. On the other hand, we
also find that an even lower n can lead to an artificial boost
in efficiency by letting the momentary Ė drop very rapidly
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Abstract: The Galactic Centre region has been observed by the complete H.E.S.S.-I array of ground-based
Cherenkov telescopes since 2004 leading to the detection of the very-high-energy (VHE, E ≥ 100 GeV) gamma-
ray source HESS J1745-290 coincident in position with the supermassive black hole Sgr A*. A TeV gamma-ray
diffuse emision has been detected along the Galactic ridge, very likely to be related to cosmic-ray interactions
in giant molecular clouds of the Central Molecular Zone. We report here on a spectral morphology study of the
inner 50 pc of the Galactic Centre region using the full data set of 2004-2012 observations . The contamination
from diffuse emission to HESS J1745-290 is subtracted which allows to recover the intrinsic spectrum of the
central source. The intrinsic source spectrum is well described by a power-law spectrum with an exponential
energy cut-off at ∼ 7 TeV.
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1 Introduction
An impressive observational activity developed in the
Galactic Center (GC) region since the detection of a
gamma-ray emission from the direction of the Galactic
Center by the EGRET satellite (3EG J1746-2852, [1]).
Observations with imaging atmospheric Cherenkov tele-
scopes soon after gave rise to the detection of an emission
in the very-high-energy (VHE, E > 100 GeV) gamma-
ray regime by the CANGAROO [2], VERITAS [3],
H.E.S.S. [4] andMAGIC [5]. The Fermi-LAT satellite then
detected a central source, 1FGL J1745.6-2900, coincident
in position with Sgr A* [6], though no firm conclusion
does exist about the association of the Fermi-LAT source
with the VHE gamma-ray source due to the presence of
a strong diffuse gamma-ray emission in the same energy
range. The observations of the GC region with the H.E.S.S.
instrument led to the detection of a point-like source of
VHE gamma-rays, HESS J1745-290, with an unprecented
accuracy in the TeV energy range thanks to its location in
the southern hemisphere, its wide field of view and the ex-
cellent hardware performances. While spatially coincident
with the supermassive black hole Sgr A*, the position of
HESS J1745-290 was still compatible with the supernova
remnant Sgr A East, and the plerion G359.95-0.04, despite
the angular resolution of the H.E.S.S. instrument of about
6′. A larger exposure on the GC region revealed a ridge
of diffuse emission extending along the Galactic plane for
about 2◦ in Galactic longitude, which was found to be spa-
tially correlated to giant molecular clouds located in the
central molecular zone [7]. The strong correlation between
the morphology of the diffuse gamma-ray emission and
the density of molecular clouds indicates the presence of a
proton accelerator in the GC region, since energetic proton
interactions with the cloud material would give rise to the
observed gamma-ray flux via π0 decays. After a careful
investigation of the pointing systematics of the H.E.S.S.
telescopes, the systematic error on the centroid position of

HESS J1745-290 emission was reduced to 13′′, allowing
the exclusion of Sgr A East supernova remnant as the main
counterpart of the VHE emission [8]. The very nature of
this VHE central emission remains still unknown, leaving
Sgr A* [9, 10], G359.95-0.04 [11, 12] and the inner 10
pc diffuse emission around Sgr A* [13] as plausible con-
tributing sources for the observed emission. The H.E.S.S.
experiment has been taking observations of the Galactic
Center region for nine years with the full telescope array
and the data collected by H.E.S.S. allows for the most de-
tailed high energy gamma-ray picture reported to date of
the GC region.
The paper is structured as follows. Section 2 describes

the analysis of the entire available dataset of H.E.S.S. to-
wards Sgr A* from 2004 to 2012. The diffuse TeV emis-
sion is analyzed in the close-by neighbourhood of HESS
J1745-290 in section 3. The contamination of the diffuse
gamma-ray emission to the central source is quantified and
the intrinsic spectrum of the central source is obtained. The
main results are summarized in section 5.

2 H.E.S.S. observations of the Galactic
Center from 2004 to 2012

2.1 Dataset and data analysis
The H.E.S.S. (High Energy Stereoscopic System) array of
Cherenkov telescopes is located in the Khomas Highlands
of Namibia at an altitude of 1800 m. The phase-I system
consists of four identical imaging atmospheric Cherenkov
telescopes. Each of them is equipped with a tesselated mir-
ror of a 107 m2 surface area and a camera of 960 photo-
multipler tubes. The total field of view of H.E.S.S. is 5◦ in
diameter. The H.E.S.S. instrument achieves an angular res-
olution at a 68% containment radius of 0.07◦ per gamma-
ray and an energy resolution of 15% on average. The point-
like source sensitivity is at the level of 2× 10−13cm2s−1

“A Population of Teraelectronvolt Pulsar Wind Nebulae
in the H.E.S.S. Galactic Plane Survey”

TeV nebula extension evolution
- 	 Strong variations, probably from 
	 surrounding medium or SNR interaction
- 	 Roughly follows trend of RPWN ~ t0.3

- 	 Some candidates are clearly larger than 
	 the general trend

TeV nebula efficiency evolution
- This efficiency compares current TeV emission from 
accumulated electron population to current Edot
-  Modeling based on Mayer et al. 2012 (arXiv:
1202.1455), now including the free expansion phase.
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Abstract: The Galactic Centre region has been observed by the complete H.E.S.S.-I array of ground-based
Cherenkov telescopes since 2004 leading to the detection of the very-high-energy (VHE, E ≥ 100 GeV) gamma-
ray source HESS J1745-290 coincident in position with the supermassive black hole Sgr A*. A TeV gamma-ray
diffuse emision has been detected along the Galactic ridge, very likely to be related to cosmic-ray interactions
in giant molecular clouds of the Central Molecular Zone. We report here on a spectral morphology study of the
inner 50 pc of the Galactic Centre region using the full data set of 2004-2012 observations . The contamination
from diffuse emission to HESS J1745-290 is subtracted which allows to recover the intrinsic spectrum of the
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1 Introduction
An impressive observational activity developed in the
Galactic Center (GC) region since the detection of a
gamma-ray emission from the direction of the Galactic
Center by the EGRET satellite (3EG J1746-2852, [1]).
Observations with imaging atmospheric Cherenkov tele-
scopes soon after gave rise to the detection of an emission
in the very-high-energy (VHE, E > 100 GeV) gamma-
ray regime by the CANGAROO [2], VERITAS [3],
H.E.S.S. [4] andMAGIC [5]. The Fermi-LAT satellite then
detected a central source, 1FGL J1745.6-2900, coincident
in position with Sgr A* [6], though no firm conclusion
does exist about the association of the Fermi-LAT source
with the VHE gamma-ray source due to the presence of
a strong diffuse gamma-ray emission in the same energy
range. The observations of the GC region with the H.E.S.S.
instrument led to the detection of a point-like source of
VHE gamma-rays, HESS J1745-290, with an unprecented
accuracy in the TeV energy range thanks to its location in
the southern hemisphere, its wide field of view and the ex-
cellent hardware performances. While spatially coincident
with the supermassive black hole Sgr A*, the position of
HESS J1745-290 was still compatible with the supernova
remnant Sgr A East, and the plerion G359.95-0.04, despite
the angular resolution of the H.E.S.S. instrument of about
6′. A larger exposure on the GC region revealed a ridge
of diffuse emission extending along the Galactic plane for
about 2◦ in Galactic longitude, which was found to be spa-
tially correlated to giant molecular clouds located in the
central molecular zone [7]. The strong correlation between
the morphology of the diffuse gamma-ray emission and
the density of molecular clouds indicates the presence of a
proton accelerator in the GC region, since energetic proton
interactions with the cloud material would give rise to the
observed gamma-ray flux via π0 decays. After a careful
investigation of the pointing systematics of the H.E.S.S.
telescopes, the systematic error on the centroid position of

HESS J1745-290 emission was reduced to 13′′, allowing
the exclusion of Sgr A East supernova remnant as the main
counterpart of the VHE emission [8]. The very nature of
this VHE central emission remains still unknown, leaving
Sgr A* [9, 10], G359.95-0.04 [11, 12] and the inner 10
pc diffuse emission around Sgr A* [13] as plausible con-
tributing sources for the observed emission. The H.E.S.S.
experiment has been taking observations of the Galactic
Center region for nine years with the full telescope array
and the data collected by H.E.S.S. allows for the most de-
tailed high energy gamma-ray picture reported to date of
the GC region.
The paper is structured as follows. Section 2 describes

the analysis of the entire available dataset of H.E.S.S. to-
wards Sgr A* from 2004 to 2012. The diffuse TeV emis-
sion is analyzed in the close-by neighbourhood of HESS
J1745-290 in section 3. The contamination of the diffuse
gamma-ray emission to the central source is quantified and
the intrinsic spectrum of the central source is obtained. The
main results are summarized in section 5.

2 H.E.S.S. observations of the Galactic
Center from 2004 to 2012

2.1 Dataset and data analysis
The H.E.S.S. (High Energy Stereoscopic System) array of
Cherenkov telescopes is located in the Khomas Highlands
of Namibia at an altitude of 1800 m. The phase-I system
consists of four identical imaging atmospheric Cherenkov
telescopes. Each of them is equipped with a tesselated mir-
ror of a 107 m2 surface area and a camera of 960 photo-
multipler tubes. The total field of view of H.E.S.S. is 5◦ in
diameter. The H.E.S.S. instrument achieves an angular res-
olution at a 68% containment radius of 0.07◦ per gamma-
ray and an energy resolution of 15% on average. The point-
like source sensitivity is at the level of 2× 10−13cm2s−1
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Abstract: The Galactic Centre region has been observed by the complete H.E.S.S.-I array of ground-based
Cherenkov telescopes since 2004 leading to the detection of the very-high-energy (VHE, E ≥ 100 GeV) gamma-
ray source HESS J1745-290 coincident in position with the supermassive black hole Sgr A*. A TeV gamma-ray
diffuse emision has been detected along the Galactic ridge, very likely to be related to cosmic-ray interactions
in giant molecular clouds of the Central Molecular Zone. We report here on a spectral morphology study of the
inner 50 pc of the Galactic Centre region using the full data set of 2004-2012 observations . The contamination
from diffuse emission to HESS J1745-290 is subtracted which allows to recover the intrinsic spectrum of the
central source. The intrinsic source spectrum is well described by a power-law spectrum with an exponential
energy cut-off at ∼ 7 TeV.
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1 Introduction
An impressive observational activity developed in the
Galactic Center (GC) region since the detection of a
gamma-ray emission from the direction of the Galactic
Center by the EGRET satellite (3EG J1746-2852, [1]).
Observations with imaging atmospheric Cherenkov tele-
scopes soon after gave rise to the detection of an emission
in the very-high-energy (VHE, E > 100 GeV) gamma-
ray regime by the CANGAROO [2], VERITAS [3],
H.E.S.S. [4] andMAGIC [5]. The Fermi-LAT satellite then
detected a central source, 1FGL J1745.6-2900, coincident
in position with Sgr A* [6], though no firm conclusion
does exist about the association of the Fermi-LAT source
with the VHE gamma-ray source due to the presence of
a strong diffuse gamma-ray emission in the same energy
range. The observations of the GC region with the H.E.S.S.
instrument led to the detection of a point-like source of
VHE gamma-rays, HESS J1745-290, with an unprecented
accuracy in the TeV energy range thanks to its location in
the southern hemisphere, its wide field of view and the ex-
cellent hardware performances. While spatially coincident
with the supermassive black hole Sgr A*, the position of
HESS J1745-290 was still compatible with the supernova
remnant Sgr A East, and the plerion G359.95-0.04, despite
the angular resolution of the H.E.S.S. instrument of about
6′. A larger exposure on the GC region revealed a ridge
of diffuse emission extending along the Galactic plane for
about 2◦ in Galactic longitude, which was found to be spa-
tially correlated to giant molecular clouds located in the
central molecular zone [7]. The strong correlation between
the morphology of the diffuse gamma-ray emission and
the density of molecular clouds indicates the presence of a
proton accelerator in the GC region, since energetic proton
interactions with the cloud material would give rise to the
observed gamma-ray flux via π0 decays. After a careful
investigation of the pointing systematics of the H.E.S.S.
telescopes, the systematic error on the centroid position of

HESS J1745-290 emission was reduced to 13′′, allowing
the exclusion of Sgr A East supernova remnant as the main
counterpart of the VHE emission [8]. The very nature of
this VHE central emission remains still unknown, leaving
Sgr A* [9, 10], G359.95-0.04 [11, 12] and the inner 10
pc diffuse emission around Sgr A* [13] as plausible con-
tributing sources for the observed emission. The H.E.S.S.
experiment has been taking observations of the Galactic
Center region for nine years with the full telescope array
and the data collected by H.E.S.S. allows for the most de-
tailed high energy gamma-ray picture reported to date of
the GC region.
The paper is structured as follows. Section 2 describes

the analysis of the entire available dataset of H.E.S.S. to-
wards Sgr A* from 2004 to 2012. The diffuse TeV emis-
sion is analyzed in the close-by neighbourhood of HESS
J1745-290 in section 3. The contamination of the diffuse
gamma-ray emission to the central source is quantified and
the intrinsic spectrum of the central source is obtained. The
main results are summarized in section 5.

2 H.E.S.S. observations of the Galactic
Center from 2004 to 2012

2.1 Dataset and data analysis
The H.E.S.S. (High Energy Stereoscopic System) array of
Cherenkov telescopes is located in the Khomas Highlands
of Namibia at an altitude of 1800 m. The phase-I system
consists of four identical imaging atmospheric Cherenkov
telescopes. Each of them is equipped with a tesselated mir-
ror of a 107 m2 surface area and a camera of 960 photo-
multipler tubes. The total field of view of H.E.S.S. is 5◦ in
diameter. The H.E.S.S. instrument achieves an angular res-
olution at a 68% containment radius of 0.07◦ per gamma-
ray and an energy resolution of 15% on average. The point-
like source sensitivity is at the level of 2× 10−13cm2s−1

“Diffuse TeV Gamma-Ray Emission in the H.E.S.S. Galactic Plane Survey”

• Average differential flux @ 1 TeV
- GLON = -75 deg ... +60 deg
- GLAT = -2 deg ... +2 deg

• HESS measurement in black.
Hadronic emission model in red.

• Statistically significant TeV flux 
excess in the diffuse analysis 
region.

• Maximum at GLAT = -0.25 deg at 
flux of 3 x 10-9 TeV-1 cm-2 s-1 sr-1.

• Caveat: background subtraction 
method would partially subtract 
large scale-height components
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pected to stem from faint sources that are unresolved be-
cause of their low fluxes (avoiding significant detection) or
very large extension not properly handled in the standard
analysis.
A minimum level of cosmic-ray induced contribution can
be estimated from p-p interactions with interstellar matter.
The γ-ray flux can be calculated following [11]

dNγ
dAdEγdtdΩ

=
∫
dld

∫ dσp−→γ

dEp
n(l,b, ld)J(Ep)dEp (1)

with ld being the line-of-sight, Ep the proton energy, J(Ep)
the cosmic-ray spectrum, dσp−→γ

dEp the interaction cross sec-
tion for the γ-ray producing interaction, and n(l,b, ld) be-
ing the column density of the gas of the interstellar medi-
um. The cosmic-ray spectrum used for the calculation is
the one measured locally at Earth, taken from [12]. The in-
teraction cross section is a parametrization of the SIBYLL
interaction code following [13]. The interstellar matter that
constitutes the target material are HI and H2. HI data
are measurements from the Leiden/Argentine/Bonn survey
(LAB [14]) assuming a spin temperature of T = 125 K,
the H2 column density is obtained using NANTEN CO da-
ta [15] as tracer of H2. A conversion factor of XCO = 2×
1020 cm−2 K−1 km−1 s [16] has been used to convert the
velocity-integrated NANTEN data to H2 column density.
The results of these calculations can be seen in the model
curves of Fig. 2. In order to assure comparability, the same
regions in the sky have been used for the calculation of the
expected γ-ray signal and the analysis, i.e. positions of γ-
ray sources have been excluded from the model calculation
for the diffuse analysis region as well. Note that due to the
poor angular resolution of the HI data sources are exclud-
ed on scales smaller than the HI bin size, which is justi-
fied only by the apparent lack of correlation between γ-ray
sources and HI densities.
The calculated γ-ray emission from p-p interactions has to
be treated as aminimal or guaranteed level of the anticipat-
ed diffuse emission signal. The calculation uses the locally
measured cosmic-ray spectrum, while the flux is expected
to vary throughout the Galaxy. The flux observed at Earth,
in no immediate proximity of any cosmic-ray accelerator
is assumed to be the minimum level of cosmic rays in the
Galaxy (“sea of cosmic rays”), while close to accelerators
the level can be significantly enhanced.
Further simplifying assumptions that are invoked (most of
them reducing the estimated contribution) include a con-
stant XCO (as opposed to some functional dependence on
Galactocentric distance), the limitation to hydrogen contri-
butions and usage of p-p cross section also for heavier cos-
mic rays.
As the contribution of neutral-pion-decay γ-rays is neat-
ly localized along the Galactic Plane, a comparison of
the contribution can be made with the H.E.S.S. data in a
first approximation without considering the issue of back-
ground subtraction and the corresponding reduction of the
signal. In the region of |b| < 1◦ in the diffuse analysis re-
gion the integrated contribution of the calculated γ-ray sig-
nal originating from π0 decay is ∼25% of the H.E.S.S.
measurement (as seen in Fig. 2 bottom panel), thereby lim-
iting the contribution of unresolved sources (also expect-
ed to concentrate close to the Plane) to less than 75%. In
comparison, the calculated contribution from neutral-pion-
decay γ-rays to the total flux including γ-ray sources is for
the region |b|< 1◦ less than 10% (as in Fig. 2 top panel).

Fig. 2: The latitude profile of γ-ray flux (shown is the dif-
ferential flux at an energy of 1 TeV), covering a longitude
range of −75◦ < l < 60◦, for the total flux including γ-ray
sources (top panel) and for the diffuse analysis region on-
ly as defined in Fig. 1 (bottom panel). H.E.S.S. measure-
ments (black data points) are compared with the calculated
level of γ-ray emission due to p-p interaction of the locally
measured cosmic-ray spectrum with HI and H2 (solid red
line, the individual components are blue dotted for H2 and
green dot-dashed for HI interactions).

The second cosmic-ray interaction component is inverse
Compton scattering. Cosmic-ray electrons upscatter pho-
tons of optical starlight, infrared dust emission and the
cosmic microwave background. The cosmic-ray electrons
that are responsible for the inverse Compton emission at
TeV energies have, depending on the radiation field they
are interacting with, energies between a few and a few
hundred TeV. At these energies, energy losses are severe
and their lifetimes and propagation distances are limited.
Therefore, the electrons are found close to their production
sites, which are either homogeneously distributed in case
of secondary production of electrons via hadronic cosmic-
ray interactions, or highly inhomogeneously localized as
for primary cosmic-ray electrons [17]. This makes an es-
timation of a contribution to the diffuse γ-ray emission at
TeV energies challenging and dependent on source model
assumptions.
Since the radiation fields as target for inverse Compton
scattering extend to higher latitudes than the bulk of the
gas distribution, the inverse Compton component to be con-
tained in the diffuse γ-ray signal will be subject to back-
ground subtraction and only gradients will be measurable
in the observed signal.

4 Conclusion
We present the first ever investigation of large-scale dif-
fuse emission with imaging atmospheric Cherenkov tele-
scopes. Imaging atmospheric Cherenkov telescopes have
the advantage of a rather precise direction reconstruction,
which puts them into advantage compared to other instru-
ments that measure at TeV energies in the identification

Total flux (including sources)

Flux in the diffuse analysis region
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Origin of the TeV flux excess
in the diffuse analysis region?

• “Guaranteed” minimal hadronic 
contribution (cosmic ray sea 
hadrons interacting with gas in the 
Milky way disk) ~ 25% of measured 
flux in the diffuse analysis region.

• Inverse Compton leptonic emission 
(cosmic ray sea electrons 
interacting with interstellar radiation 
fields)

• Source emission from unresolved 
sources or “tail emission” from 
known very extended sources.

• Disentangling different components  
contributing to the excess in the 
“diffuse analysis region” (i.e. away 
from significant sources) is very 
hard, because sources and diffuse 
emission (and exposure and thus 
background) all have a similar 
spatial shape.
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Sources and diffuse emission in the
Galactic center region

Mathieu de Naurois COSPAR, July 2010 34
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Galactic center source

(19 +- 5)% diffuse contribution
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Table 2: Values of the spectral parameters of the HESS J1745-290 energy spectrum for different datasets with their
respective statistical errors. The spectrum is fitted with a power-law with index Γ and an exponential energy cut-off at the
energy Ec. Errors quoted here refer to 1 σ statistical errors only.

Data set Φ0 Γ Ec Φ(≥ 1TeV) χ2/d.o.f.
[10−12 TeV−1 cm−2 s−1] [TeV] [10−12 cm−2 s−1]

2004-2008 2.61 ± 0.04 2.14 ± 0.03 10.8 ± 2.2 1.74 ± 0.07 62.7/61
2004-2009 2.59 ± 0.04 2.14 ± 0.03 10.8 ± 2.2 1.72 ± 0.07 70.3/66
2004-2010 2.58 ± 0.04 2.14 ± 0.03 10.5 ± 2.0 1.71 ± 0.06 72.5/68
2004-2011 2.53 ± 0.04 2.15 ± 0.03 11.3 ± 2.4 1.69 ± 0.06 71.8/68

All 2.55 ± 0.04 2.14 ± 0.03 10.7 ± 2.0 1.69 ± 0.06 75.7/74

Assuming that the diffuse emission has an azimuthal sym-
metry along the Galactic plane, gamma rays with a similar
energy spectrum should be contributing as foreground and
background to the intrinsic HESS J1745-290 spectrum.
The data analysis is performed with the same tech-

nique for the gamma-ray event selection as for the HESS
J1745-290 analysis, and the background level is deter-
mined by the Multiple-Off technique, using OFF regions
placed around the observation position at the same off-set
as the ON region. An excess of more than 10146 gamma
rays is found above 140 GeV in the ON region with a total
significance of 70.6 σ . The energy spectrum is then fitted
by a power-law distribution, and an index of Γ = 2.48±
0.02stat± 0.10syst is found.
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Figure 1: Angular distribution of gamma-ray events plot-
ted as function of θ 2 for HESS J1745-290 (green his-
togram). The angular distribution of gamma-ray events pre-
dicted by the diffuse model (blue histogram) is shown. The
model was renormalised in order to match the observed
number of gamma-rays for θ 2≥ 0.04 deg2. The ON source
region corresponds to squared angular distances θ 2 ≤ 0.01
deg2.

3.2 Amplitude of the diffuse emission
contamination

A simple method to estimate the amplitude of the diffuse
emission contribution to HESS J1745-290 is by fitting θ 2
the events distribution, shown in Fig. 1, under the assump-
tion of a central point-like source plus a linear component
to account for the diffuse emission. Extending the linear
part under the central source gives a first estimation of
the diffuse emission contamination to HESS J1745-290,
which by this procedure is found to be about 11%. How-
ever a more accurate determination can be done by mod-
elling the diffuse emission as coming from the interaction
of hadronic cosmic-rays, accelerated in the vicinity of the
Galactic Center, with the interstellar material of the Cen-
tral Molecular Zone. Because of the close correlation be-
tween the gamma-ray emission and the density of inter-
stellar material in GMCs, the gamma-ray flux is assumed
to be proportional to the matter density. The latter is ob-
tained by means of CS observations [19]. The CS map
is then convoluted with the point spread function corre-
sponding to the cuts used in the analysis presented in Sec-
tion 2.1 to match the angular resolution of H.E.S.S. instru-
ment. The normalisation of the predicted gamma-ray map
is later matched to the data. Using the angular distribution
of gamma-ray events shown in Fig. 1, a linear regression
between the model and the observed events for squared dis-
tance θ 2 ≥ 0.04 deg2 is performed to normalize the diffuse
emission model. The diffuse component contamination to
HESS J1745-290 then amounts to 19%. The linear regres-
sion error at 1σ level gives an uncertainty of ±5 % for the
estimate of the contamination.

3.3 Intrinsic spectrum of HESS J1745-290
The intrinsic spectrum of the central source is recovered
by fitting the data assuming two spectral components. The
first component is set to the expected diffuse emission spec-
trum under the central source, for which the normalisation
is found so that the expected number of gamma rays due
to the diffuse component matches the 19% of the expected
number of gamma rays due to HESS J1745-290. The ex-
pected number of gamma rays per unit of time coming
from a given source is found by folding the source spec-
trum with the detector acceptance, obtained from the ob-
servational dataset, and integrating over all energies. The
second component is assumed to have a power law with
an exponential energy cut-off shape. This component is
hereafter referred as to the intrinsic spectrum of the central
source and is found after fitting the sum of the two compo-
nents to the data. Figure 2 shows the total energy spectrum
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of HESS J1745-290, with the analytical form of the two
components highlighted. The intrinsic central source spec-
trum reveals a spectral index of 2.04± 0.03stat± 0.10syst,
with an energy cut-off at (7.9 ±1.3stat ±1.2syst) TeV, and
Φ0 = (2.53± 0.09stat± 0.40syst)× 10−12 cm−2s−1TeV−1.
The total fit gives a χ2/d.o.f. = 68.1/74. Gamma rays from
the diffuse emission dominate HESS J1745-290 spectrum
at energies above∼ 25 TeV.
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Figure 2: Top panel : The green region correspond to the
1 σ contour for the best-fit with the sum of two compo-
nents, a power law with parameters completely fixed and a
power law with an exponential energy cut-off. The HESS
J1745-290 spectrum (black line) is the sum of the diffuse
spectrum (blue line) and the central gamma-ray source
(red line). The data points are obtained with the forward-
folding method. A 95% C. L. upper limit on the intrinsic
central gamma-ray source flux is also plotted (red point) .
Bottom panel : The residuals of the fit (Nγ,obs - Nγ,th)/σγ,obs.
It is well centered on 0, which indicates the good quality
of the fit.

4 Summary
A study of the spectral morphology of the inner 50 pc of
the Galactic Center region using the whole H.E.S.S. data
set from 2004 to 2012 is presented. The energy spectrum
of the central HESS J1745-290 still shows a clear devia-
tion from pure power-law spectrum, with an energy cut-off
at (10.7± 2.0stat± 1.8syst) TeV. The determination of the
energy spectrum of the diffuse emission around the central
source is found to follow a power-law distribution with an

spectral index of 2.48± 0.02± 0.10syst. The contamina-
tion of the diffuse emission to HESS J1745-290 is calcu-
lated through a model of hadronic interaction in the central
molecular clouds. The contribution is found to account for
19% ± 5% of the total signal of HESS J1745-290. The in-
trinsic spectrum of the central source is found after a spec-
tral subtraction of the diffuse component under the HESS
J1745-290 signal, revealing a stronger energy cut-off at
(7.9 ±1.37.78stat ±1.2syst) TeV. Additionally gamma rays
from the diffuse emission are predicted to dominate the
full HESS J1745-290 spectrum at energies above 25 TeV.
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Abstract: The Galactic Centre region has been observed by the complete H.E.S.S.-I array of ground-based
Cherenkov telescopes since 2004 leading to the detection of the very-high-energy (VHE, E ≥ 100 GeV) gamma-
ray source HESS J1745-290 coincident in position with the supermassive black hole Sgr A*. A TeV gamma-ray
diffuse emision has been detected along the Galactic ridge, very likely to be related to cosmic-ray interactions
in giant molecular clouds of the Central Molecular Zone. We report here on a spectral morphology study of the
inner 50 pc of the Galactic Centre region using the full data set of 2004-2012 observations . The contamination
from diffuse emission to HESS J1745-290 is subtracted which allows to recover the intrinsic spectrum of the
central source. The intrinsic source spectrum is well described by a power-law spectrum with an exponential
energy cut-off at ∼ 7 TeV.
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1 Introduction
An impressive observational activity developed in the
Galactic Center (GC) region since the detection of a
gamma-ray emission from the direction of the Galactic
Center by the EGRET satellite (3EG J1746-2852, [1]).
Observations with imaging atmospheric Cherenkov tele-
scopes soon after gave rise to the detection of an emission
in the very-high-energy (VHE, E > 100 GeV) gamma-
ray regime by the CANGAROO [2], VERITAS [3],
H.E.S.S. [4] andMAGIC [5]. The Fermi-LAT satellite then
detected a central source, 1FGL J1745.6-2900, coincident
in position with Sgr A* [6], though no firm conclusion
does exist about the association of the Fermi-LAT source
with the VHE gamma-ray source due to the presence of
a strong diffuse gamma-ray emission in the same energy
range. The observations of the GC region with the H.E.S.S.
instrument led to the detection of a point-like source of
VHE gamma-rays, HESS J1745-290, with an unprecented
accuracy in the TeV energy range thanks to its location in
the southern hemisphere, its wide field of view and the ex-
cellent hardware performances. While spatially coincident
with the supermassive black hole Sgr A*, the position of
HESS J1745-290 was still compatible with the supernova
remnant Sgr A East, and the plerion G359.95-0.04, despite
the angular resolution of the H.E.S.S. instrument of about
6′. A larger exposure on the GC region revealed a ridge
of diffuse emission extending along the Galactic plane for
about 2◦ in Galactic longitude, which was found to be spa-
tially correlated to giant molecular clouds located in the
central molecular zone [7]. The strong correlation between
the morphology of the diffuse gamma-ray emission and
the density of molecular clouds indicates the presence of a
proton accelerator in the GC region, since energetic proton
interactions with the cloud material would give rise to the
observed gamma-ray flux via π0 decays. After a careful
investigation of the pointing systematics of the H.E.S.S.
telescopes, the systematic error on the centroid position of

HESS J1745-290 emission was reduced to 13′′, allowing
the exclusion of Sgr A East supernova remnant as the main
counterpart of the VHE emission [8]. The very nature of
this VHE central emission remains still unknown, leaving
Sgr A* [9, 10], G359.95-0.04 [11, 12] and the inner 10
pc diffuse emission around Sgr A* [13] as plausible con-
tributing sources for the observed emission. The H.E.S.S.
experiment has been taking observations of the Galactic
Center region for nine years with the full telescope array
and the data collected by H.E.S.S. allows for the most de-
tailed high energy gamma-ray picture reported to date of
the GC region.
The paper is structured as follows. Section 2 describes

the analysis of the entire available dataset of H.E.S.S. to-
wards Sgr A* from 2004 to 2012. The diffuse TeV emis-
sion is analyzed in the close-by neighbourhood of HESS
J1745-290 in section 3. The contamination of the diffuse
gamma-ray emission to the central source is quantified and
the intrinsic spectrum of the central source is obtained. The
main results are summarized in section 5.

2 H.E.S.S. observations of the Galactic
Center from 2004 to 2012

2.1 Dataset and data analysis
The H.E.S.S. (High Energy Stereoscopic System) array of
Cherenkov telescopes is located in the Khomas Highlands
of Namibia at an altitude of 1800 m. The phase-I system
consists of four identical imaging atmospheric Cherenkov
telescopes. Each of them is equipped with a tesselated mir-
ror of a 107 m2 surface area and a camera of 960 photo-
multipler tubes. The total field of view of H.E.S.S. is 5◦ in
diameter. The H.E.S.S. instrument achieves an angular res-
olution at a 68% containment radius of 0.07◦ per gamma-
ray and an energy resolution of 15% on average. The point-
like source sensitivity is at the level of 2× 10−13cm2s−1

“Spectral analysis of the Galactic Center emission
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Summary & Outlook

• H.E.S.S. has over the past decade 
performed the first sensitive TeV 
Galactic plane survey.

• A release of sky-maps and a source 
catalog in FITS format are in 
preparation.

• H.E.S.S. has detected TeV emission 
from a large variety of Galactic 
sources.

• Pulsar wind nebulae seem to be the 
largest Galactic TeV source class.

• Upcoming H.E.S.S. studies on 
- Galactic diffuse emission
- Galactic center region
- TeV PWN and SNR population
- individual new sources
... see ICRC 2013 contributions: 
arxiv.org/html/1308.1548v2

• Other lower-energy observations 
(especially gamma-ray, X-ray and 
radio) are crucial to identify and 
understand TeV sources.

• Thanks for having me in this 
session!

Wed 9:00 am
Emma de Ona-Wilhelmi
“Galactic TeV overview”
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