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Outline

e Cosmic ray physics, and a new way to detect cosmic rays at energies of 108 eV

e Concept of bi-static radar detection, plasma frequencies, and other atmospheric
radar detections

* Remote station noise backgrounds

— Coincidence formation and anthropogenic noise minimization

— Background studies
* Deployment of prototype remote station

— Hardware design, data collection

— Environmental data analysis and power consumption — *QuarkNet student
 Monte Carlo analysis

— Basic signal dependencies, beginning to reconstruct primary information

e (Conclusion



Bi-static Radar Detection of Cosmic Rays, I

Two ways to think about signal, which is a chirp:
1) Doppler shift from evolving path length P e
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Bi-static Radar Detection of Cosmic Rays, 11

Four regimes to consider:

Regime #1: plasma frequency exceeds transmitter (over-dense), and transmitter
wavelength exceeds critical radius of shower (Rayleigh)

Regime #2: plasma frequency exceeds transmitter (over-dense), and transmitter
wavelength is less than the critical radius (optical) ... less likely, lambda = 6 m (see below)

Regime #3: plasma frequency is lower than transmitter (under-dense), and Rayleigh
regime ... requires coherent scattering before electron thermalization, need ~30 m
wavelengths

Regime #4: plasma frequency is lower (under-dense), and optical regime ... requires
coherent scattering before electron thermalization, diffusion, and recombination

Radar cross-section for regime #1 as a thin wire approximation (main source of signal)
(Gorham 2001):
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Meteorites — Similar to detection to cosmic
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Example of a simulated signal — 50 EeV cosmic ray
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Chirp rate: ~ 2
MHz/us (typical)

Energy: 50 EeV
Zenith: 45 degrees

Chirps down to the
transmitter CW
frequency of 54.1
MHz

Current form of the
receiver samples at
250 MS/s to capture
full profile



Remote Station N 2
Additions to TARA
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Peak Finding
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Peak finding algorithm: findpeaks in matlab (compares
adjacent frequency bins to search for local maxima)
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Conclusions drawn from the background study

* Far more noise spikes are found when observing
North or South (airline trafficc HAM radio)

» East and West produce fewer spikes (good because
transmitter is East of FD site)

* The remote sites investigated are much quieter (~40
dB...green to blue) at the frequencies which are loud
at the FD site

e There are several sites that are “all blue,” allowing
for future coincidence studies with TARA at FD



Galactic noise floor — observationally

confirmed
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Prototype Remote Station, design
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Prototype Remote Station, data, 1
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Monte Carlo Analysis

Cosmic ray horizontal trajectory

Azimuthal angle is measured
from positive x-axis

Zenith angle is measured from 0
to pi

Core hit locations are measured
in global (x,y) coordinate system

Tests: move receiver to test
signal dependency for remote
stations, effect of dipole
modulation (over-dense
calculation), receiver and
transmitter beam-widths,
process for determining theta
and phi, enerqgy



Early Reconstruction Efforts, I (All Monte Carlo)
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Early Reconstruction Efforts, I1
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Early Reconstruction Efforts, IV

Chirp Rate (MHz/us)
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Early Reconstruction Efforts, I11

Peak Voltage (Normalized to Max)
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Early Reconstruction Efforts, IV
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Conclusion
« TARA is a new way to detect cosmic rays

* Remote stations are being designed, built for quiet environments
discovered

e There are several handles on event geometry leading to information
on the primary cosmic ray

e Future work: multi-remote station studies to derive geometry from
signal timing
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Cosmic Ray Spectrum, and GZK effect
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Prototype Remote Station,
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