Selection and Monte Carlo Optimization of Telescope Array Radar Remote Receiver Stations

Dr. Jordan Hanson Ultra-High Energy Messengers Parallel Session TeVPA 2013 August 27th, 2013

Outline

- Cosmic ray physics, and a new way to detect cosmic rays at energies of 1018 eV
- Concept of bi-static radar detection, plasma frequencies, and other atmospheric radar detections
- Remote station noise backgrounds
 - Coincidence formation and anthropogenic noise minimization
 - Background studies
- Deployment of prototype remote station
 - Hardware design, data collection
 - Environmental data analysis and power consumption *QuarkNet student
- Monte Carlo analysis
 - Basic signal dependencies, beginning to reconstruct primary information
- Conclusion

Bi-static Radar Detection of Cosmic Rays, I

Two ways to think about signal, which is a chirp:

- 1) Doppler shift from evolving path length
- 2) CW reflection (over-dense), but with continuous time-dependent phase

 $v_p = (2\pi)^{-1} \sqrt{n_e e^2 / \epsilon m_e} (Hz)$

Under and over-dense regions: ~10¹³ ions/m, plasma frequency above and below radar CW wave

Incident Wave

Distant Transmitter

TARA40: 40 kW

transmitter Yagi array

Sigma is the radar cross-section, the effective area of the scattering surface

(Figure from H. Takai, ICRC Proceedings, 2013)

Main TARA receiver

and remote stations

RCRS Detector

Bi-static Radar Detection of Cosmic Rays, II

Four regimes to consider:

Regime #1: plasma frequency exceeds transmitter (over-dense), and transmitter wavelength exceeds critical radius of shower (Rayleigh)

Regime #2: plasma frequency exceeds transmitter (over-dense), and transmitter wavelength is less than the critical radius (optical) ... less likely, lambda = 6 m (see below)

Regime #3: plasma frequency is lower than transmitter (under-dense), and Rayleigh regime ... requires coherent scattering before electron thermalization, need ~30 m wavelengths

Regime #4: plasma frequency is lower (under-dense), and optical regime ... requires coherent scattering before electron thermalization, diffusion, and recombination

Radar cross-section for regime #1 as a thin wire approximation (main source of signal) (Gorham 2001):

$$\sigma_{max}^{od} = \frac{\pi L^2 \cos^4(\varphi)}{\pi^2 / 4 + (\ln(\lambda / (1.78 \pi r_c)))^2} \qquad \sigma^{od}(\theta) = \frac{\lambda^2 \tan^2(\theta) \cos^4(\varphi)}{(\pi^2 / 4 + (\ln(\lambda / (1.78 \pi r_c \sin \theta)))^2) 16 \pi}$$

Critical radius r_c , Shower segment length L Polarization angle phi, Radar wavelength lambda

Meteorites – Similar to detection to cosmic

Example of a simulated signal – 50 EeV cosmic ray

Background Studies

At each of these sites: CW spectrum from 30-100 MHz

Proposed site

Proposed site

To transmitter, 80 degrees E

Proposed site

Proposed site

Proposed site

Proposed site

Proposed site

Peak Finding

Fluorescence detector site, Eastward heading, -30 dBm threshold on peak finding algorithm

Fluorescence detector site, Eastward heading, -50 dBm threshold on peak finding algorithm

Peak finding algorithm: findpeaks in matlab (compares adjacent frequency bins to search for local maxima)

Power in dBm

Conclusions drawn from the background study

- Far more noise spikes are found when observing North or South (airline traffic, HAM radio)
- East and West produce fewer spikes (good because transmitter is East of FD site)
- The remote sites investigated are much quieter (~40 dB...green to blue) at the frequencies which are loud at the FD site
- There are several sites that are "all blue," allowing for future coincidence studies with TARA at FD

Galactic noise floor – observationally confirmed

Prototype Remote Station, goals, design

Prototype Remote Station, design

TARA Power Station Connection Diagram

KLR

Last update: 5/14/2013

Prototype Remote Station, data, I

Monte Carlo Analysis

Cosmic ray horizontal trajectory

Azimuthal angle is measured from positive x-axis

Zenith angle is measured from 0 to pi

Core hit locations are measured in global (x,y) coordinate system

Tests: move receiver to test signal dependency for remote stations, effect of dipole modulation (over-dense calculation), receiver and transmitter beam-widths, process for determining theta and phi, energy

Early Reconstruction Efforts, I (All Monte Carlo)

Chirp Simulation:

TRX: gain/beam-width/
polarization of the physical
transmitter (phased Yagi array)
at (0,25k)

RX: gain/beam-width polarization of the receivers (dual-pol LPDA) at (39.5k,25k)

Early Reconstruction Efforts, II

Early Reconstruction Efforts, IV

Early Reconstruction Efforts, III

Early Reconstruction Efforts, IV

Attempting to obtain the zenith angle independently, and beginning to understand how to derive the energy.

Blue events are the special geometric population

Conclusion

- TARA is a new way to detect cosmic rays
- Remote stations are being designed, built for quiet environments discovered
- There are several handles on event geometry leading to information on the primary cosmic ray
- Future work: multi-remote station studies to derive geometry from signal timing

References

- Gorham, P. "On the possibility of radar echo detection of ultra-high energy cosmic ray-and neutrino-induced extensive air showers." Astroparticle Physics 15, 2001
- Isaac Myers, Mohammed Abou Bakr, private communication
- Steven Prochyra, Samridha Kunwar, private communication
- Ackermann et. al. "Detection of the Characteristic Pion Decay Signature in Supernova Remnants." Science, 339 (2013)

Cosmic Ray Spectrum, and GZK effect

Nucleon-photon threshold effect which produces secondary particles, including neutrinos

Fermi data: example of protonic supernova remnant-origin (≤10 TeV) (Ackermann et al., 2013)

How heavy are they (are they mostly protons, or heavier)?

Electron-positron production before cutoff

Concentration before cutoff suggests that maximum energy is higher than GZK energy

Prototype Remote Station, data, II (Kerry Thomas via QuarkNet)

