TeV Particle Astrophysics 2013, Irvine, CA, August 26-29, 2013

Cosmic Ray Energetics And Mass (CREAM) for the ISS JEM-EF

Eun-Suk Seo Inst. for Phys. Sci. & Tech. and Department of Physics University of Maryland

E. S. Seo^{1,2}, T. Anderson³, D. Angelaszek^{1,2}, S. J. Baek⁴, J. Baylon⁵, M. Buénerd⁶, N. B. Conklin^{3,10}, M. Copley¹, S. Coutu³, L. Derome⁶, L. Eraud⁶, M. Gupta¹, J. H. Han¹, H. G. Huh¹, Y. S. Hwang⁷, H. J. Hyun⁷, I. S. Jeong⁴, D. H. Kah⁷, K. H. Kang⁷, H. J. Kim⁷, K. C. Kim¹ M. H. Kim¹, K. Kwashnak¹, J. Lee⁴, M. H. Lee¹, J. Link^{8,11}, L. Lutz¹, A. Malinin¹, A. Menchaca-Rocha⁵, J. W. Mitchell⁸, S. Nutter⁹, O. Ofoha¹, H. Park⁷, I. H. Park⁴, J. M. Park⁷, P. Patterson¹, J. Wu¹, Y. S. Yoon^{1,2}

¹IPST, University of Maryland, College Park, USA
²Dept. of Physics, University of Maryland, College Park, USA
³Dept. of Physics, Penn State University, University Park, USA
⁴Dept. of Physics, Sungkyunkwan University, Suwon, Korea
⁵Instituto de Física, Universidad Nacional Autónoma de México, Mexico
⁶Laboratoire de Physique Subatomique et de Cosmologie, Grenoble, France
⁷Dept. of Physics, Kyungpook National University, Daegu, Republic of Korea
⁸Astrophysics Space Division, NASA Goddard Space Flight Center, USA
⁹Dept. of Physics, Northern Kentucky University, USA
¹⁰Now at Gannon University, Erie, PA, USA

How do cosmic accelerators work?

Cosmic Ray Energetics And Mass (CREAM)

Seo et al. Adv. in Space Res., 33 (10), 1777, 2004; Ahn et al., NIM A, 579, 1034, 2007

- Transition Radiation Detector (TRD) and Tungsten Scintillating Fiber Calorimeter
 - In-flight cross-calibration of energy scales for Z > He
- Complementary Charge Measurements
 - Timing-Based Charge Detector
 - Cherenkov Counter
 - Pixelated Silicon Charge Detector

- Two CREAM instrument suites

 With and without the TRD
- This exploded view shows the "With TRD" design
- The "Without TRD" design uses Cherenkov Camera

Eun-Suk Seo

CREAM Balloon Flight Heritage

The longest known flight time for a single balloon project

Six Balloon Flights in Antarctica in 6 years: ~ 161 days Cumulative Exposure

Eun-Suk Seo

Recovery, Refurbishment and Re-flight The team with experience

Elemental Spectra over 4 decades in energy

Ahn et al., ApJ 715, 1400, 2010; Ahn et al. ApJ 707, 593, 2009

Distribution of cosmic-ray charge measured with the SCD. The individual elements are clearly identified with excellent charge resolution. The relative abundance in this plot has no physical significance

P & He: prior to CREAM

CREAM spectra harder than prior lower energy experiments

CREAM: He spectrum is harder than p spectrum

Heavy nuclei spectra look like He

Yoon et al. ApJ 728, 122, 2011; Ahn et al. ApJ 714, L89, 2010

CREAM consistent with AMS-02 where they overlap

Eun-Suk Seo

Need to extend measurements to higher energies

Unpublished Data Not Shown

Taking into account the spectral hardening of elements for the (AMS/PAMELA/ATIC/FERMI) high energy e⁺ e⁻ enhancement

Yuan & Bi, arXiv:1304.2687v1 & 1304.2687v1, 2013

Eun-Suk Seo

Consider propagation of CR in the interstellar medium with random hydromagnetic waves.

Steady State Transport Eq.:

$$\partial \frac{\partial}{\partial z} D_j \frac{\partial f_j}{\partial z} + \frac{\rho}{m} v \sigma f_j + \frac{1}{p^2} \frac{\partial}{\partial p} p^2 K_j \frac{\partial f_j}{\partial p} + \frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 \left(\frac{dp}{dt}\right)_{j,ion} f_j \right] = q_j + \sum_{k < j} S_{jk}$$

The momentum distribution function f is normalized as $N = \int dp p^2 f$ where N is CR number density, D: spatial diffusion coefficient, σ : cross section...

$$\frac{I_{j}}{X_{e}} + \frac{\sigma_{j}}{m}I_{j} + \alpha \{...\} + \frac{d}{dE} \left[\left(\frac{dE}{dx} \right)_{j,ion} I_{j} \right] = \frac{Q_{j}}{\rho_{0}} + \sum_{k < j} \frac{\sigma_{jk}}{m}I_{k}$$
Cosmic ray intensity $I_{j}(E) = A_{j}p^{2}f_{0j}(p)$
Escape length Xe
Reacceleration parameter α

E. S. Seo and V. S. Ptuskin, Astrophys. J., 431, 705-714, 1994.

What is the history of cosmic rays in the Galaxy?

Ahn et al. (CREAM collaboration) Astropart. Phys., 30/3, 133-141, 2008

- Measurements of the relative abundances of secondary cosmic rays (e.g., B/C) in addition to the energy spectra of primary nuclei will allow determination of cosmic-ray source spectra at energies where measurements are not currently available
 - First B/C ratio at these high energies to distinguish among the propagation models $X_e \propto R^{-\delta}$

From CREAM to ISS-CREAM (CREAM for the ISS)

Increase the exposure by an order of magnitude

- The International Space Station (ISS) is nearly ideal for our quest to investigate the low fluxes of high-energy cosmic rays.
- The CREAM instrument will be re-packaged for accommodation on NASA's share of the Japanese Experiment Module Exposed Facility (JEM-EF).
- This "ISS-CREAM" mission is planned for <u>launch in 2014</u>.

ISS-CREAM Instrument

Ahn et al., NIM A, 579, 1034, 2007; Amare et al. 33rd ICRC, #0630, 2013

ISS-CREAM payload

Mission Concept & Data Flow

Plan to be launch ready in 2014

ISS-CREAM takes the next major step

- The ISS-CREAM space mission can take the next major step to 10¹⁵ eV, and beyond, limited only by statistics.
- The 3-year goal, 1-year minimum exposure would greatly reduce the statistical uncertainties and extend CREAM measurements to energies beyond any reach possible with balloon flights.

What is the history of cosmic rays in the Galaxy?

Ahn et al. (CREAM collaboration) Astropart. Phys., 30/3, 133-141, 2008

- Being above the atmosphere, ISS-CREAM would be far superior to multiple ULDB flights.
- Measurements of the relative abundances of secondary cosmic rays (e.g., B/C) in addition to the energy spectra of primary nuclei will allow determination of cosmic-ray source spectra at energies where measurements are not currently available
- First B/C ratio at these high energies to distinguish among the propagation models

Unpublished Data Not Shown

High Energy Electrons

Science Goal

 Measure electrons with sufficient accuracy and statistics to search for nearby cosmic ray sources.

Instrument Requirement

- Electron / Proton Separation with less than 5% proton background
- Proton rejection power 8 x 10⁴

Unpublished Data Not Shown

Data Flow & Science Operations

Angelaszek et al. 33rd ICRC, #0108, 2013

CREAM

Eun-Suk Seo