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Cherenkov
Telescopes

Blue Cherenkov light beamed forward
Illuminates ~105 m2 on the ground 
Short flash of few nanoseconds
Intensity O(10 photons/m2) @ 1 TeV



Meteor trackClue: 
imaging the cascade
geometry ➜ photon direction
intensity ➜ photon energy
shape ➜ cosmic ray rejection




Meteor trackClue: 
imaging the cascade
geometry ➜ photon direction
intensity ➜ photon energy
shape ➜ cosmic ray rejection


Multi-telescope systems
provide a 3D view of the
cascade



The CTA Concept
light pool radius 
R ≈100-150 m
≈ typical telescope spacing

•  Arrays in northern and southern hemispheres for full sky coverage
•  4 large (~23 m) telescopes in the center (LSTs)

Threshold of ~30 GeV
•  ≥25 medium (9-12 m) telescopes (MSTs) covering ~1 km2

Order of magnitude sensitivity improvement in 100 GeV–10 TeV range
•  Small (~4 m) telescopes (SSTs) covering >3 km2 in south

>10 TeV observations of Galactic sources
•  Construction begins in ~2015
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Sites: Candidates

+30

-30

Two sites to cover full sky
at 20o-30o N, S

Galactic plus extragalactic science,  
Dark Matter studies of the Galactic Center 

Mainly
extragalactic
science 
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From current arrays to CTA

Light pool radius 
R ≈100-150 m
≈ typical telescope spacing

Sweet spot for
best triggering 
and reconstruction:
Most shower cores miss it!

Large detection area
More images per shower
Lower trigger threshold
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From current arrays to CTA

Light pool radius 
R ≈100-150 m
≈ typical telescope spacing

Sweet spot for
best triggering 
and reconstruction:
Most shower cores miss it!

Large detection area
More images per shower
Lower trigger threshold

With US telescopes
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Why a large array? 

Sufficiently large and capable MST array is 
the primary goal of the US groups 

•  Double the size of the southern array 
•  Developing novel design w/ secondary 

mirror & <0.07° optical psf 

Figures from Slava Bugaev 

Color scale: number of triggered telescopes for 500 GeV showers 

4 x 3.5° FoV 25 x 8° FoV 61 x 8° FoV 

2x 

3x 

4x 

130 m spacing 130 m spacing 130 m spacing 

Minimum Number of Triggered Telescopes 



Schwarzschild-Couder Telescope 
Design 

•  Reduces plate scale, corrects aberrations 
providing higher resolution, wider field camera 
at similar cost to traditional, lower-resolution 
cameras. 

•  Small plate scale enables new photodetector 
technologies to be exploited (e.g. SiPMs) 

•  Deep analog memory waveform samplers to 
minimize dead-time, and allow more powerful/
flexible hardware array triggering.  

•  High level of integration into ASICs allows 
dramatic cost savings (<$20 per channel for 
waveform digitizers, <$100 per channel for 
total camera cost) 

•  Hierarchical camera design and modularity for 
serviceability, lower development costs 
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3/7/13 11
1 km

Differential Sensitivity

SLAC Cosmic

CTA Baseline (50 hr)
w/ US Extension (50 hr)

~3x improvement 
in core energy range
from US contribution

CTA Baseline (Prod-1): See K. Bernlohr et al. 2012, arXiv:1210.3503
w/ US Extension (Hybrid-1): See T. Jogler et al. 2012, arXiv: 1211.3181

Fermi (3yr)



Recommended by�
 several relevant roadmaps …
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Report of the HEPAP 

Particle Astrophysics 

Scientific Assessment 

Group (PASAG) 

23 October 2009 
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Gamma-ray astrophysics

Supernova 
remnants

AGN

GRBs

Dark Matter
Space time

EBL

Cosmic rays

... ?

Particle Acceleration

Pulsars

Binaries

Annihilation 

Cosmology

Starburst Galaxies



Simulated Galactic Plane surveys

H.E.S.S.

CTA, for same exposure

Expect ~1000 detected sources over the whole sky

Funk et al., Amer. Inst. Phys. Conf. Proc. 1085, 886 (2008)



Growth of Source Populations



(Credit:X-ray: NASA/CXC/Rutgers/
G.Cassam-Chenai, J.Hughes et al.; 
Radio: NRAO/AUI/NSF/GBT/VLA/
Dyer, Maddalena & Cornwell; 
Optical: Middlebury College/
F.Winkler, NOAO/AURA/NSF/CTIO 
Schmidt & DSS) 

Resolving complex sources

SN 1006 — a 
detected VHE 
gamma-ray source

SN 1006
H.E.S.S. resolution

SN 1006
CTA resolution



in shocks, knots, or hot spots, which could be identified with the
angular resolution of CTA. Conversely, the detection of an ex-
tended VHE halo around M 87 would be very challenging but
could be possible with CTA (see Fig.11), assuming, as seen by
Fermi in Cen A, a flux in the lobes of 50% the flux detected in
the TeV range during a low state of the source [3] for an ex-
tension of 0.2 degrees corresponding to the extension of radio
maps.
Generally speaking, nearby radio galaxies offer the oppor-

tunity of unique studies of extreme acceleration processes in
relativistic jets and in the vicinity of supermassive black holes.
Given the proximity of the sources and the larger jet angle to
the line of sight compared to BL Lac objects, the outer and
inner kpc jet structures are potentially resolvable by CTA, en-
abling us to look for possible VHE radiation from large scale
jets and hot spots besides the central core and VLBI jet, and
to spatially pin down the main site of the emission. With the
help of simultaneous multiwavelength observations and tempo-
ral correlation studies, different sections of the jet and the core
can be probed, down to the smallest pc (milliarcsecond) scale,
only accessible to VLBI radio observations or timing analysis.
Further studies of variability with CTA will strengthen the lim-
its on the size of the emission region and clarify the correla-
tions with other wavelengths. Long-term monitoring and the
search for intra-night variability would be two major goals to
constrain the physics and start characterizing this new popula-
tion of sources. Remembering the basic classification of extra-
galactic radio sources, one could consider highly variable VHE
radiogalaxies as likely core-dominated gamma-ray sources, and
poorly variable ones as possibly lobe-dominated gamma-ray
sources. Needless to say that this VHE population is still lack-
ing a standard unifying model and obviously deserves further
analysis.
In contrast to the three other VHE radiogalaxies, IC 310 was

initially not recognized as having a specifically remarkable non-
thermal activity. Its serendipitous discovery at VHE in the field
of NGC 1275 emphasized our current poor knowledge on VHE
populations. Only recently it appeared in the Fermi catalog and
was then identified as a potential TeV source. Two emission
zones can be considered, the central engine and the inner jet
as commonly described for TeV BL Lacs, or the bow shock
created by interaction of the fast moving host galaxy with the
intracluster gas [59]. Astrometric and angular resolution ca-
pabilities of CTA should distinguish between them. However,
the first option appears favored because of the detection of few-
dayscale variability. Indeed, IC 310 was already mentioned in
the literature as a FR I source which may have a non-thermal
activity related to the BL Lac phenomena, but at weaker levels
than characterized by the standard definition of BL Lac objects
[70]. VHE instruments are therefore possibly on the way to
solve some long-standing difficulties of AGN unification which
proposes that BL Lac are FR I radiogalaxies seen along their jet
axis, namely the problem of ”missing BL Lac” and the ques-
tion of the still elusive transition population between beamed
BL Lacs and unbeamed FR I galaxies [71]. Surveys at VHE
could have the capability to recognize a population of low lu-
minosity or misdirected BL Lacs, difficult to identify at lower

energies, and thus ”bridge the gap” between genuine BL Lacs
and FRI radiogalaxies.
Recent and fast developments on VHE radiogalaxies show

that present VHE instruments start to provide an original view
of non-thermal activity from central AGN engines and inner
jets, with the capability to directly probe a very specific re-
gion, still not fully identified and unreachable by other means,
in the close vicinity of SMBH, such as for M 87. The next
generation of IACT will explore this still missing link between
SMBH magnetospheres and the physics of jets and extended
radiosources. One can also anticipate that it could provide de-
cisive constraints on the fundamental question of the total en-
ergy budget of some non-thermal sources where the contribu-
tion of the extended gamma-ray emission appears quite signifi-
cant, such as for Cen A.

Figure 10: The diffuse gamma-ray emission detected by Fermi from the giant
lobes of the radiogalaxy Cen A [68]. Depending on the actual VHE spatial
distribution, and the sensitivity and angular resolution performance of CTA,
the structure of the extended VHE emission on the kpc scale in the central part
of the galaxy can be probed (here the white circle corresponds to the LAT PSF
of 1 degree).

3.4. Seyfert galaxies
There is a growing evidence that relativistic jets are not only

seen in blazars and radio galaxies but in several types of Seyfert
galaxies as well. About 5% of narrow-line Seyfert 1 (NLS1)
galaxies are radio-loud (RL) [72], and show flat spectra to-
gether with variability in the radio band, suggesting the pres-
ence of relativistic jets. This hypothesis has recently been
confirmed by the detection of a small number of RL-NLS1s
with Fermi-LAT [73]. The measured GeV spectra are typi-
cally steep, with Γ = 2.5 − 2.8, which makes the detection of
RL-NLS1s with CTA challenging. However, at least two RL-
NLS1s (PMN J0948+022 and SBS 0846+513) have shown sig-
nificant variability [74, 75], with gamma-ray luminosities that

9

Resolving extragalactic sources: Cen A

Fermi LAT >200 MeV 
background-subtracted counts 

map of Cen A 
Abdo et al. 2010, Science 328, 725 

Fermi LAT PSF at 10 GeV 
CTA PSF at 100 GeV (≥2 images) 
CTA PSF at 300 GeV (≥10 images) 

(68% containment) 

Expect to detect hundreds of AGN 



Dark matter searches with CTA

 

  

Dark Matter Detection Prospects for 
the Cherenkov Telescope Array   

D. Nieto1 for the CTA Consortium2  
1Columbia University 
2See http://www.cta-observatory.org  
 for full author & affiliation list 

Introduction 
The Cherenkov Telescope Array (CTA) is an international project 
for a next-generation ground-based gamma-ray observatory. CTA, 
conceived as an array of few tens of imaging atmospheric 
Cherenkov telescopes, is aiming to improve on the current 
generation sensitivity by an order of magnitude, with an energy 
coverage from a few tens of GeV to 100 TeV. CTA can potentially 
provide clues about the nature of the dark matter (DM) component 
of the Universe. Here we study the CTA prospects for detection of 
DM, evaluating different possible array layouts (see Fig. 1), based 
on the expected performance of the instrument as obtained from 
Monte Carlo simulations.  
 
 
 
 
 
 
 
 
 
 
 
 
In the cold dark matter scenario (CDM), weakly interacting 
massive particles (WIMPs), with masses in the GeV-TeV range, 
fulfill the role of the DM particle. If such WIMPs annihilate to 
standard model particles, the expected photon flux can be 
expressed as: 
 

 
 
 
  
In the following, we explore the sensitivity of CTA to the 
aforementioned expected gamma-ray flux, considering different 
observation strategies and classes of targets. 

Dwarf spheroidal gal- 
axies (dSph) show 
astrophysical factors in 
the range of 1017-1019 
GeV2 cm-5 and an ex- 
pected low γ�ray back- 
ground. Considering 
100 h observations on 
Segue-1 dSph, annihi- 
lation cross sections 
down to 10-24~cm3s-1 

could be excluded (see 
Fig. 5). Assuming the 
same observation time 
and a canonical annihi- 
lation cross section of 
3x10−26 cm3s−1, we find 
that the minimum as- 
trophysical factor that 
would provide a detec- 
tion by CTA would be 
~1021 GeV2 cm-5, as 
shown in Fig. 2. 

Galaxy Clusters 
The γ-ray signal from DM annihilation in galaxy 
clusters is entangled with the γ-ray flux 
originated by the embedded astrophysical 
sources and by cosmic-ray interactions within 
the intracluster medium. Spectral features as 
well as the peculiar spatial extension of the DM-
induced signal may help to disentangle it from 
the conventional emission. Disregarding the 
contribution from such conventional emission, 
and in the specific case of the Fornax galaxy 
cluster, annihilation cross-sections down to 
10-25~cm3s-1 could be probed with 100 h 
observations, as shown in Fig. 5.  

http://www.cta-observatory.org 

We present the dark matter detection prospects of the planned 
Cherenkov Telescope Array for different array layouts. We 
explore several observational strategies and classes of targets 
and we show the complementarity of Fermi-LAT and the 
Cherenkov Telescope Array for indirect dark matter searches. 

The 4th International 
Fermi Symposium 

28 Oct – 2 Nov, 2012, Monterrey, CA 

Spatial Signatures 
The extragalactic γ-ray background (EGB) is 
thought to be primarily composed of conven- 
tional unresolved sources, but some fraction 
might be generated by DM annihilation. The 
anisotropy power spectra which characterize 
each component are expected to be different. 
Therefore, specific signatures in the EGB power 
spectrum could distinguish a scenario where the 
EGB has a pure astrophysical origin from that 
which contains an additional DM component. 
Fig. 4 shows that for deep exposures and an 
excellent background rejection, CTA will be able 
to resolve these scenarios if the DM component 
of the EGB accounts for more than 20% of the 
total flux. 

Fig. 4: Comparison between simulated anisotropy power 
spectra with a pure astrophysical origin (blue bands) and with an 
additional DM component (20% of the total flux, red bands). The 
assumed observation time is 300 h. The three cases in each plot 
represent the hadronic background rates of 10Hz,1Hz, and 0.1Hz. 
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Fig. 5: Comparison of exclusion curves of Fermi-LAT in 24 
months and expected for 10 years. The exclusion curves for the 
various targets studied in this contribution are also reported for the  
annihilation channel bb: for the dwarf satellite galaxy Segue 1 
(green curve), for the Fornax galaxy cluster in case only DM-
induced gamma-rays are considered (blue line) and for the ring-
method observations of the Galactic Centre vicinities (red line). 
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Conclusion 
Fig. 5 summarizes the constraints that we expect 
with CTA for a WIMP annihilating purely into bb 
in 100 h observation, with the different targets 
discussed above. The best results correspond to 
the observation of the vicinity of the Galactic 
Center, where we expect to be sensitive to 
annihilation cross-sections of the order of 
10−26~cm3s−1. CTA will constitute the most 
sensitive instrument to DM signals at masses 
>100 GeV, complementing the excellent Fermi-
LAT sensitivity at lower energies. It should be 
noted that the presented results must be 
considered as conservative: preliminary 
simulations predict an improvement of a factor 2 
in sensitivity by populating the arrays with 36 
additional Schwarzschild-Couder mid-size 
telescopes (US contribution). Furthermore, 
analysis techniques specifically optimized for 
DM signals are expected to notably improve CTA 
performance for this kind of searches. 

Fig. 2: Minimum value of the astrophysical factor required 
for a 5σ detection after 100 h of observations, versus the WIMP 
mass. These results apply to any DM distribution which can be 
considered a point-like source for CTA. Two annihilation 
channels are considered for arrays B, C, and E: bb (upper 
curves) and τ+τ- (lower curves). The estimated astrophysical 
factor for Segue 1 is shown for comparison. 
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any possible DM signal in that region. Observations of the DM halo in an annular region 
around the GC, by means of the so-called Ring Method, are able to overcome the 
aforementioned inconvenience and to provide the best sensitivity to a DM signal among all 
studied targets. This technique could probe regions below the canonical annihilation cross 
section for thermally produced WIMPs in 100 h of observations, as shown in Fig. 3. 

Galactic Center Halo 
The γ-ray flux from annihilation of DM particles 
should be highest in the Galactic Center (GC). 
However, conventional γ-ray sources outshine 
an 

References: Dark Matter and Fundamental Physics with the Cherenkov Telescope Array 
arXiv:1208.5356; accepted for publication in Astroparticle Physics; doi:10.1016/j.astropartphys.2012.08.002  

Fermi dwarf spheroidal  
and CTA Galactic 
Center searches are 
complementary 

Assuming b b-bar decay channel 
 

LAT 2-year result from Ackermann et 
al. 2011, Phys. Rev. Lett. 107, 241302. 

 



Dark matter searches with CTA

Constraints
ΩDMh2 > 0.1
XENON100 (2011)
CMS+ATLAS (2012)
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1

Complementarity -SUSY scan (pMSSM)

M. Cahill-Rowley et al. - 
Snowmass white paper
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Extragalactic Background Light

γHigh Energy+γEBL –> e+ e-


Difficult to measure 
EBL because of 

foreground sources


Test of cosmology


Attenuation by 1/e 
(i.e. e-τ with τ = 1) for
 z ~ 1.2 at 100 GeV

z ~ 0.1 at 1 TeV

Gilmore et al. 2009,
MNRAS 399, 1694 
(arXiv:0905.1144)



D. Mazin et al. (2013), Astropart. Phys. 43, 241 

Photon Propagation through the Cosmos

Spectral index Γ from fit to dN/dE ~ E-Γ	


EBL model of Franceschini et al. 2008 

Transparent 
region 

Opaque 
region 

Measured spectral index in 
opaque region 

Implied spectral index in 
transparent region 
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The EBL and Intergalactic B Fields
	

• Electrons produced by 

γHigh Energy+γEBL –> e+ e- 
Compton scatter off EBL to 
produce more photons
• Amount that the cascade fans 

out depends on intergalactic 
magnetic field (IGMF) strength
• Observable effects:
•  Pair halo
•  Spectral distortion
•  Large time delays between prompt 

and reprocessed photons

Figures from Taylor et al. 2011, arXiv:
1101.0932
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Axion-like Particles (ALPs)

Simulated CTA observation 
Bright flare from 4C 21.35 

0.1 nG IGMF 
EBL of Dominguez et al. 2011 
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Figure 2.2: Simulation of a 5 h CTA observation of a 4C +21.35 flare 5 times
more intense than the one recorded by MAGIC [149]. In black, energy bins
used for the fit (those with a signal exceeding three times the RMS of the back-
ground, and a minimum of 10 excess events). Excluded points are displayed
in grey. The estimated intrinsic differential energy spectrum (after correcting
for the EBL effect) shows a boost at high energies due to photon/ALP mix-
ing. The IGMF strength is assumed to be 0.1 nG, and ALP parameters result in
Ecrit = 200 GeV.
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Figure 2.3: Same as in Fig. 2.2, but with Ecrit = 1 TeV. Note that in scenarios
like this, where Ecrit is within the energy range in which the EBL absorption is
already large, the boost in the flux shows up as a sudden rise (smeared out by
the spectral resolution of the instrument) which would even allow to determine
Ecrit accurately.

Using the performance parameters of array E, we obtain the
expected gamma-ray and cosmic-ray background rates in bins
of estimated energy, and from them the reconstructed differ-
ential energy spectrum. After this, we correct the observed
spectrum by the energy-dependent attenuation factors expected
from the EBL in order to get an estimate of the intrinsic source
spectrum. Each simulated spectrum is fitted to a power-law
with variable index of the form dN/dE ∝ E−α−β log(E/0.1TeV),
in which we constrain the β parameter so that the spectrum can-
not become harder with increasing energy (such behavior is not
expected from emission models in this energy range). Only en-
ergy bins with a signal exceeding three times the RMS of the
background, and a minimum of 10 excess events, are consid-

ered in the fit.
In the absence of any significant photon/ALP mixing, the

resulting fits will all match the spectral points within the ex-
perimental uncertainties, resulting in good χ2 values. But, as
shown in Ref. [143], certain combinations of ALP parameters
and values of the IGMF may result in significant modifications
of the observed VHE spectra. The most striking feature is a
boost of the expected flux at high energies, which is particularly
prominent in the estimated intrinsic (i.e. EBL-de-absorbed)
spectrum. Such a feature may result in a low value of the χ2-
probability of the spectral fit. In Figs. 2.2 and 2.3 we show two
such cases, in which the observed spectra, after de-absorption
of the EBL effect, show a clear hardening of the spectral in-
dex. The effect is particularly striking in the cases in which the
EBL absorption at E = Ecrit is already strong (e.g. Fig. 2.3), be-
cause then the boost sets in very fast, resulting in dN/dE rising
with energy at around Ecrit. The rise is actually very sharp, but
it is smoothed by the energy resolution of the instrument. An
improvement in the energy resolution would increase the sig-
nificance of the feature and improve the determination of Ecrit.
In contrast, if Ecrit is in the range in which the EBL absorp-
tion is small or negligible (Fig. 2.2), the feature at Ecrit would
just be a flux drop of at most # 30% [143], also washed out
by the instrumental energy resolution. In those cases, though
a high-energy boost may still be clearly detected, it would be
hard to determine the exact value of Ecrit. This is because, in
the formalism described in Ref. [143], similar ALP boost fac-
tors are always achieved at energies E > Ecrit, independently of
the particular value of Ecrit in each case.
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two different durations: 0.5 and 5 hours, and with intensities equal to 1 and 5
times that of the flare reported in [149]. The dashed horizontal line marks the
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Prospects
For each of the Ecrit values scanned, we have performed 103

simulations of a CTA observation, all with the same source flux
and observation time. We consider that a given value of Ecrit
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Figure 3. Axion and ALP coupling to photons, giγ ≡ αCiγ/(2πfai
), vs. its mass (adapted by Javier

Redondo [49] from Refs. [50, 51]). The yellow band is the generic prediction for the QCD axion, exploiting
Eqs. (2) and (4), which relate its mass with its coupling to photons.

3. Opportunities to probe the intermediate string scale LVS
3.1. Haloscope searches
We have seen, that the LVS predicts – for the least fine-tuning of fluxes, such that gs ∼ 0.1
and W0 ∼ 1, and a TeVish gravitino mass – an intermediate string scale and thus a QCD axion
in the classic window, cf. Eq. (32). For decay constants in the upper part of this window,
fa ! 1011÷12 GeV, the QCD axion is expected to contribute substantially to the cold dark
matter in the universe, see Eq. (6). Therefore, the intermediate string scale LVS can be probed
by haloscope searches for axion cold dark matter [43] such as ADMX [44, 45, 46, 47]. These
experiments exploit the coupling (4) by searching for the signal of dark matter axion to photon
conversions in a narrow bandwidth microwave cavity sitting in a strong magnetic field. As can
be seen from the light green area in Fig. 3 labelled as “Haloscopes”, a substantial range of the
QCD axion dark matter parameter range will be probed by ADMX and other haloscopes [48]
in the next decade.

3.2. Helioscope searches
A complementary search for the QCD axion in the lower part of the classic window, fa !
109÷10 GeV, can be conducted with the next generation of axion helioscopes [43], in which
one tries to detect solar axions by their conversion into photons inside of a strong magnet
pointed towards the sun. Indeed, the projected sensitivity of the proposed International Axion
Observatory IAXO [52] covers nicely a part of QCD axion parameter space which will not be
covered by the haloscope searches, as can be seen in Fig. 3.

A very welcome feature of helioscopes is that they do not lose sensitivity towards low masses:
their projected sensitivity are best and stay constant at small masses, see Fig. 3. That means,
with IAXO one may also probe the LVS axiverse, in particular the possible existence of more
ALPs with approximate the same coupling to photons as the QCD axion.

This is very important in view of recent tantalising astrophysical hints, such as the anomalous
transparency of the Universe for TeV photons [53] and the anomalous cooling of white
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Left figure: Doro et al., Astropart. Phys. 43, 189; arXiv:1208.5356 
Right figure: Sanchez-Conde et al., in prep., adapted from Ringwald, 2012, arXiv:1209.2299  

Caveat: Other astrophysical processes, e.g. UHECR cascades, can also 
lead to spectral hardening  



Opening up the Transient Domain

Funk & Hinton

Field of view, duty cycle also matter



A simulated GRB (E > 30 GeV)

from
Gamma-Ray Burst Science in the Era of Cherenkov Telescope Array
(Astroparticle Physics special issue article) 
Susumu Inoue et al.


CTA Simulation of GRB 080916C seen by GBM + LAT

30 s for slew 

More about GRBs with CTA in 
Yoshiyuki Inoue’s talk on Wednesday



Lorentz Invariance with Pulsars 

28
E. Aliu et al. (The VERITAS Collaboration), Science 334, 69–72 (2011) 

A. N. Otte 2011, arXiv:1208.2033 

100 MeV and 120 GeV peaks line up 
Linear: ELIV > 3x1017 GeV 
Quadratic: ELIV > 7x109 GeV 
 

VERITAS > 120 GeV 

Fermi  > 100 MeV 

Higher statistics, larger energy reach, more pulsars with CTA 



A New Understanding of the TeV Universe

§ 10-fold improved sensitivity for TeV studies of the cosmos
ü  Analogous to the advance from EGRET to Fermi-LAT

§ Detailed studies of Galactic cosmic-ray acceleration
§ New sensitivity to the high-energy processes in blazar jets
§ Astrophysics foundation and sensitivity for recognizing 

new fundamental physics
ü  Sensitive searches for dark matter in its cosmic home
ü  Tests of cosmology — EBL, IGMF
ü  γ-ray propagation over cosmic distances — LIV, ALPs




