

Probing the Very High Energy Universe with the Cherenkov Telescope Array

David A. Williams
Santa Cruz Institute for Particle Physics
University of California, Santa Cruz

For the CTA Consortium http://www.cta-observatory.org

The CTA Concept

- Arrays in northern and southern hemispheres for full sky coverage
- 4 large (~23 m) telescopes in the center (LSTs)
 Threshold of ~30 GeV
- ≥25 medium (9-12 m) telescopes (MSTs) covering ~1 km² Order of magnitude sensitivity improvement in 100 GeV-10 TeV range
- Small (~4 m) telescopes (SSTs) covering >3 km² in south
 >10 TeV observations of Galactic sources
- Construction begins in ~2015

Sites: Candidates

From current arrays to CTA

Light pool radius R ≈100-150 m

≈ typical telescope spacing

Sweet spot for best triggering and reconstruction:

Most shower cores miss it!

Large detection area — More images per shower Lower trigger threshold

From current arrays to CTA

and reconstruction:
Most shower cores miss it!

Large detection area — More images per shower Lower trigger threshold

Why a large array?

Color scale: number of triggered telescopes for 500 GeV showers Sufficiently large and capable MST array is the primary goal of the US groups

- Double the size of the southern array
- Developing novel design w/ secondary mirror & <0.07° optical psf

Schwarzschild-Couder Telescope Design

- Reduces plate scale, corrects aberrations providing higher resolution, wider field camera at similar cost to traditional, lower-resolution cameras.
- Small plate scale enables new photodetector technologies to be exploited (e.g. SiPMs)
- Deep analog memory waveform samplers to minimize dead-time, and allow more powerful/ flexible hardware array triggering.
- High level of integration into ASICs allows dramatic cost savings (<\$20 per channel for waveform digitizers, <\$100 per channel for total camera cost)
- Hierarchical camera design and modularity for serviceability, lower development costs

Differential Sensitivity

CTA Baseline (Prod-1): See K. Bernlohr et al. 2012, arXiv:1210.3503 w/ US Extension (Hybrid-1): See T. Jogler et al. 2012, arXiv: 1211.3181

Recommended by several relevant roadmaps ...

Gamma-ray astrophysics

Simulated Galactic Plane surveys

H.E.S.S.

CTA, for same exposure

Expect ~1000 detected sources over the whole sky

Growth of Source Populations

Resolving complex sources

SN 1006 — a detected VHE gamma-ray source

SN 1006 CTA resolution

SN 1006 H.E.S.S. resolution

Resolving extragalactic sources: Cen A

Fermi LAT >200 MeV background-subtracted counts map of Cen A

Abdo et al. 2010, Science 328, 725

Fermi LAT PSF at 10 GeV CTA PSF at 100 GeV (≥2 images) CTA PSF at 300 GeV (≥10 images)

(68% containment)

Expect to detect hundreds of AGN

Dark matter searches with CTA

Fermi dwarf spheroidal and CTA Galactic Center searches are complementary

Assuming b b-bar decay channel

LAT 2-year result from Ackermann et al. 2011, *Phys. Rev. Lett.* **107**, 241302.

Dark matter searches with CTA

Complementarity -SUSY scan (pMSSM)

Extragalactic Background Light

$$\gamma_{High Energy} + \gamma_{EBL} -> e^+ e^-$$

Difficult to measure EBL because of foreground sources

Test of cosmology

Attenuation by 1/e (i.e. $e^{-\tau}$ with $\tau = 1$) for $z \sim 1.2$ at 100 GeV $z \sim 0.1$ at 1 TeV

Photon Propagation through the Cosmos

Spectral index Γ from fit to dN/dE ~ E^{- Γ} EBL model of Franceschini et al. 2008

D. Mazin et al. (2013), Astropart. Phys. 43, 241

The EBL and Intergalactic B Fields

 $\Xi_{\gamma}^2 dN_{\gamma}/dE_{\gamma} Log_{10} [eV cm^{-2} s^{-1}]$

Electrons produced by

γ_{High Energy}+γ_{EBL} -> e⁺ e⁻ Compton scatter off EBL to produce more photons

- Amount that the cascade fans out depends on intergalactic magnetic field (IGMF) strength
- Observable effects:
 - Pair halo
 - Spectral distortion
 - Large time delays between prompt and reprocessed photons

Figures from Taylor *et al.* 2011, arXiv: 1101.0932

Simulated CTA observation
Bright flare from 4C 21.35
0.1 nG IGMF
EBL of Dominguez et al. 2011

Caveat: Other astrophysical processes, e.g. UHECR cascades, can also lead to spectral hardening

Left figure: Doro et al., Astropart. Phys. 43, 189; arXiv:1208.5356

Right figure: Sanchez-Conde et al., in prep., adapted from Ringwald, 2012, arXiv:1209.2299

Opening up the Transient Domain

Field of view, duty cycle also matter

A simulated GRB (E > 30 GeV)

CTA Simulation of GRB 080916C seen by GBM + LAT

from
Gamma-Ray Burst Science in the Era of Cherenkov Telescope Array
(Astroparticle Physics special issue article)
Susumu Inoue et al.

More about GRBs with CTA in Yoshiyuki Inoue's talk on Wednesday

cherenkov telescope array

Lorentz Invariance with Pulsars

100 MeV and 120 GeV peaks line up

Linear: $E_{11V} > 3x10^{17} \text{ GeV}$

Quadratic: $E_{LIV} > 7x10^9 \text{ GeV}$

Higher statistics, larger energy reach, more pulsars with CTA

E. Aliu et al. (The VERITAS Collaboration), *Science* 334, 69–72 (2011) A. N. Otte 2011, arXiv:1208.2033

A New Understanding of the TeV Universe

- 10-fold improved sensitivity for TeV studies of the cosmos
 - ✓ Analogous to the advance from EGRET to Fermi-LAT
- Detailed studies of Galactic cosmic-ray acceleration
- New sensitivity to the high-energy processes in blazar jets
- Astrophysics foundation and sensitivity for recognizing new fundamental physics
 - ✓ Sensitive searches for dark matter in its cosmic home
 - ✓ Tests of cosmology EBL, IGMF
 - √ γ-ray propagation over cosmic distances LIV, ALPs