Recent results on Galactic TeV gamma-ray sources

Emma de Oña Wilhelmi IEEC-CSIC, Barcelona

- Current TeV gamma-ray telescopes
 Non-thermal radiation from 0.1 to tens of TeV
 Covering the North and the South hemispheres
- The Milky Way at E>100 GeV
 Diffuse and discrete gamma-ray emitters
- TeV particle accelerators
 Late stages of massive stars
 SNRs, PWNe, Binary Systems
 Galactic Center, Unidentified Sources

- Current TeV gamma-ray telescopes
 Non-thermal radiation from 0.1 to tens of TeV
 Covering the North and the South hemispheres
- The Milky Way at E>100 GeV
 Diffuse and discrete gamma-ray emitters
- TeV particle accelerators Late stages of massive stars SNRs, PWNe, Binary Systems Galactic Center, Unidentified Sources New types?

Production of TeV gamma-ray emission

- -Particles have to be accelerated to Ee,p>I TeV
- —If electrons:

$$\gamma_{\text{LE}} + e^{\pm}_{\text{ HE}} -> \gamma_{\text{HE}} + e^{\pm}_{\text{ LowerE}}$$

IC on Starlight, CMB and/or dust

$$e_{LE}^{\pm} + B$$
 -> $\gamma_{LE} + e_{LowerE}^{\pm}$

Synchrotron emission in presence of B

TeV gamma-rays can trace the electron population (independently of the B distribution)

$$N_e \propto E^{-\delta} => N_{Y} \propto E^{-(\delta+1)/2}$$

$$Ee=(18 \, TeV) \, E_{TeV}^{1/2}$$

—If hadrons:

Trace Cosmic Rays accelerator/s Ep ~10 E_{TeV} $N_p \sim E^{-\delta} => N_{Y^{\infty}}E^{-\delta}$

Search for PeVatrons

HESS 2012

The Population of TeV Galactic Sources

TeV Galactic Surveys

Particle/Water Cherenkov Detectors

Energy range 1-100 TeV
Area > 10⁴ m²
Background Rejection > 95%
Angular Resolution ~0.3-0.7°
Aperture > 2 sr
Duty cycle 90%

MILAGRO

TeV Galactic Surveys

TeV Galactic Surveys

Gast et al, 2011

The Inner Galaxy

H.E.S.S. Collaboration 2011

The Inner Galaxy

The Inner Galaxy

The Inner Galaxy

The Inner Galaxy

The Inner Galaxy

H.E.S.S. GPS will be soon to be released

- > Sensitivity, Flux, Excess, Upper limits Maps
- > Source catalogue
- > SNRs and PWNe population studies

Galactic Diffuse Emission

*See also contribution by C. Deil

HESS: Aharonian et al., 2006,2007

HESS: ICRC 2013

- Many SNRs detected and well-study at lower energy ranges (evolution, magnetic fields, composition, etc....)
- Galactic CR luminosity = L_{CR} ~ 10⁴¹ erg/s → η_{CR} ~ 0.1×(R_{SN}/0.03 yr⁻¹)×(10⁵¹ erg/E_{SN})
- Why is it important to observe SNRs at VHE
 - > VHE trace the particle distribution, independently of the magnetic field
- > Origin of Cosmic Rays! -> direct evidence for GeV-PeV (e,p) being accelerated at front shocks
- Direct observation of the known shells seems to elude PeV particles

BUT! PeV particles are believed to be accelerated at the beginning of Sedov phase (~200yrs), when the shock speed is high!

Look deeper at the surroundings of the SNR for very-high-energy run-away particles

Direct observation of the known shells seems to elude PeV particles

- 7(8) shell-type SNRs detected at TeV energies
- Up to ~3 kpc away
- BUT large FoV and deep surveys allow the serendipitous discovery of new SNRs i.e. SNR G353.6-0.7 or HESS J1912+101 (?)

Name	Dist (kpc)	Size (pc)	Age (yrs)	L_{γ} (10 ³³ erg/s)	Γ
RX J1713.7–3946	1	17.4	1.6	8	2.0
RX J0852-4622	0.2(1)	6.8(34)	0.4(5)	0.26(6.4)	2.2
RCW 86	1(2.5)	11(28)	1.6(10)	1(6)	2.5
SN 1006	2.2	18.3	1	1.24	2.3
Cas A	3.4	2.5	350	7	2.4
Tycho	3.5	6	438	0.1	1.95
SNR G353.6-0.7	3.2	27	2.5(14)	10	2.3

- 7(8) shell-type SNRs detected at TeV energies
- ∅ Up to ~3 kpc away
- BUT large FoV and deep surveys allow the serendipitous discovery of new SNRs i.e. SNR G353.6-0.7 or HESS J1912+101 (?)

Name	Dist (kpc)	Size (pc)	Age (yrs)	L_{γ} (10 ³³ erg/s)	Γ
RX J1713.7–3946	1	17.4	1.6	8	2.0
RX J0852-4622	0.2(1)	6.8(34)	0.4(5)	0.26(6.4)	2.2
RCW 86	1(2.5)	11(28)	1.6(10)	1(6)	2.5
SN 1006	2.2	18.3	1	1.24	2.3
Cas A	3.4	2.5	350	7	2.4
Tycho	3.5	6	438	0.1	1.95
SNR G353.6-0.7	3.2	27	2.5(14)	10	2.3

Source Type: Supernova Remnants in dense environment

- Large number of SNRs interacting with Molecular Clouds detected at lower energies by Fermi
- Detection of the tail of the LAT gamma-ray spectrum

© G349.7+0.2, 0.4% Crab: d=22 Kpc! interacting with Te4 Mocloud (L~2e33 erg/s)

W28

Aharonian et al, 2007

W51, 3% Crab: d=5.5 kpc interacting with 2e5 Mo cloud (L~1e36 erg/s)

Source Type: Pulsars and their relativistic Winds

Source Type: Pulsars and their relativistic Winds

- ♦ Pulsed emission
 - * Polar cap/Outer gap
 - * Slot gap
 - Striped wind model
 - * Cascading of secondary particles

- ource Type: Pulsars and their relativistic Winds
 - ♦ Pulsed emission
 - * Polar cap/Outer gap
 - * Slot gap
 - Striped wind model
 - * Cascading of secondary particles

- ource Type: Pulsars and their relativistic Winds
 - ♦ Pulsed emission
 - * Polar cap/Outer gap
 - * Slot gap
 - Striped wind model
 - * Cascading of secondary particles
 - ♦ IC from relativistic bulk of e-?
 - Non-thermal pulsed soft photons
 target -> Pulsed IC emission
 - * Thermal isotropic radiation target->Steady GeV emission

- Pulsed emission
 - Polar cap/Outer gap
 - Slot gap
 - Striped wind model
 - Cascading of secondary particles
- IC from relativistic bulk of e-?
 - Non-thermal pulsed soft photons target -> Pulsed IC emission
 - Thermal isotropic radiation target->Steady GeV emission

- Pulsed emission
 - Polar cap/Outer gap
 - Slot gap
 - Striped wind model
 - Cascading of secondary particles
- IC from relativistic bulk of e-?
 - Non-thermal pulsed soft photons target -> Pulsed IC emission
 - Thermal isotropic radiation target->Steady GeV emission
- - Unpulsed emission
 - Seeding on photons from the CMB, IR, UV and synchrotron

- Pulsed emission
 - Polar cap/Outer gap
 - Slot gap
 - Striped wind model
 - Cascading of secondary particles
- IC from relativistic bulk of e-?
 - Non-thermal pulsed soft photons target -> Pulsed IC emission
 - Thermal isotropic radiation target->Steady GeV emission
- - Unpulsed emission
 - Seeding on photons from the CMB, IR, UV and synchrotron

Pulsed emission at VHE

Two explanation proposed:

✓ Hirotani, 2012

- SSC from secundary electron-positron pairs created in the magnetosphere
- IC of the relativist wind with pulsed low-energy (X-ray) emission

Aharonian, 2012

Veritas & MAGIC Collaborations, 2011

Aharonian et al. Nature 482, 507-509, 2012

- Largest population (>20 identified PWNe)
- young: age<10⁵ yrs energetic: Edot >10³⁵ erg/s
- Populations Studies
- I. Old systems in which we observe leptonic cooling
- II. Young systems showing very good correlations with X-ray and radio

Required Ee to radiate synchrotron keV photons:

 $E_e = (70 \text{ TeV}) B^{-1/2}_{-5} E^{1/2}_{keV}$

Mean Ee to IC scatter CMB to TeV photons:

 $E_e = (18 \text{ TeV}) E^{1/2}_{TeV}$ ($E_{keV} = 0.06 B_{-5} E_{TeV}$) Hofmann 200

Synchrotron τ, scattering CMB to E_γ=10¹² E_{TeV} eV

 $\tau(E_V) \sim (4.8 \text{ kyr}) \text{ B}^{-2}_{-5} \text{ E}_{\text{TeV}}^{-1/2}$

Live-time of keV-emitting electrons

 $\tau(E_x) = (1.2 \text{ kyr}) \text{ B}^{-3/2} - 5 \text{ E}_{keV}^{-1/2}$

 $(E_{keV} = 0.06 B_{-5} E_{TeV})$

- Largest population (>20 identified PWNe)
- young: age<10⁵ yrs energetic: Edot >10³⁵ erg/s
- Populations StudiesI. Old systems in which we cII. Young systems showing ve

If B~150 uG:

electron producing I TeV photons IC will produce I keV synchrotron photons If B<150 uG:

X-ray emitting electrons are more energetic than the gamma-ray emitting ones.

Required Ee to radiate synchr/ ron keV photons:

 $E_e = (70 \text{ TeV}) B^{-1/2}_{-5} E^{1/2}_{keV}$

Mean Ee to IC scatter CMB//o TeV photons:

 $E_e = (18 \text{ TeV}) E^{1/2}_{TeV}$ ($E_{keV} = 0.06 B_{-5} E_{TeV}$) Hofmann 200

Synchrotron τ , scattering CMB to $E_{\gamma}=10^{12}~E_{TeV}$ eV

 $\tau(E_V) \sim (4.8 \text{ kyr}) \text{ B}^{-2}_{-5} \text{ E}_{\text{TeV}}^{-1/2}$

Live-time of keV-emitting electrons

 $\tau(E_x) = (1.2 \text{ kyr}) \text{ B}^{-3/2} - 5 \text{ E}_{keV}^{-1/2}$

 $(E_{keV}=0.06 B_{-5}E_{TeV})$

- Largest population (>20 identified PWNe)
- young: age<10⁵ yrs energetic: Edot >10³⁵ erg/s
- Populations Studies
- I. Old systems in which we observe leptonic cooling
- II. Young systems showing very good correlations with X-ray and radio

Required Ee to radiate synchrotron keV photons:

 $E_e = (70 \text{ TeV}) B^{-1/2}_{-5} E^{1/2}_{keV}$

Mean Ee to IC scatter CMB to TeV photons:

 $E_e = (18 \text{ TeV}) E^{1/2}_{TeV}$ ($E_{keV} = 0.06 B_{-5} E_{TeV}$) Hofmann 200

Synchrotron τ, scattering CMB to E_γ=10¹² E_{TeV} eV

 $\tau(E_V) \sim (4.8 \text{ kyr}) \text{ B}^{-2}_{-5} \text{ E}_{\text{TeV}}^{-1/2}$

Live-time of keV-emitting electrons

 $\tau(E_x) = (1.2 \text{ kyr}) \text{ B}^{-3/2} - 5 \text{ E}_{keV}^{-1/2}$

 $(E_{keV} = 0.06 B_{-5} E_{TeV})$

- Largest population (>20 identified PWNe)
- young: age<10⁵ yrs energetic: Edot >10³⁵ erg/s
- Populations Studies
- I. Old systems in which we observe leptonic cooling
- II. Young systems showing very good correlations with X-ray and radio

Required Ee to radiate synchrotron keV photons:

 $E_e = (70 \text{ TeV}) B^{-1/2}_{-5} E^{1/2}_{keV}$

Mean Ee to IC scatter CMB to TeV photons:

 $E_e = (18 \text{ TeV}) E^{1/2}_{TeV}$ ($E_{keV} = 0.06 B_{-5} E_{TeV}$)

F_o – (18 TeV) F^{1/2}TeV

Hofmann 2009

Synchrotron τ , scattering CMB to $E_{\gamma}=10^{12}~E_{TeV}$ eV

 $\tau(E_V) \sim (4.8 \text{ kyr}) \text{ B}^{-2}_{-5} \text{ E}_{\text{TeV}}^{-1/2}$

Live-time of keV-emitting electrons

 $\tau(E_x) = (1.2 \text{ kyr}) \text{ B}^{-3/2} - 5 \text{ E}_{keV}^{-1/2}$

 $(E_{keV} = 0.06 B_{-5} E_{TeV})$

- —The IC-electron survive longer : relic emission
- The size of the VHE sources is much larger than the X-ray ones in evolved systems

- Largest population (>20 identified PWNe)
- young: age<10⁵ yrs energetic: Edot >10³⁵ erg/s
- Populations Studies
- I. Old systems in which we observe leptonic cooling
- II. Young systems showing very good correlations with X-ray and radio

Required Ee to radiate synchrotron keV photons:

 $E_e = (70 \text{ TeV}) B^{-1/2}_{-5} E^{1/2}_{keV}$

Mean Ee to IC scatter CMB to TeV photons:

 $E_e = (18 \text{ TeV}) E^{1/2}_{TeV}$ ($E_{keV} = 0.06 B_{-5} E_{TeV}$) Hofmann 2009

Synchrotron τ , scattering CMB to $E_{\gamma}=10^{12}~E_{TeV}$ eV

 $\tau(E_V) \sim (4.8 \text{ kyr}) \text{ B}^{-2}_{-5} \text{ E}_{\text{TeV}}^{-1/2}$

Live-time of keV-emitting electrons

 $\tau(E_x) = (1.2 \text{ kyr}) \text{ B}^{-3/2} - 5 \text{ E}_{\text{keV}}^{-1/2}$

 $(E_{keV} = 0.06 B_{-5} E_{TeV})$

- The IC-electron survive longer: relic emission
- The size of the VHE sources is much larger than the X-ray ones in evolved systems

- Largest population (>20 identified PWNe)
- young: age<10⁵ yrs energetic: Edot >10³⁵ erg/s
- Populations Studies
- I. Old systems in which we observe leptonic cooling
- II. Young systems showing very good correlations with X-ray an

Required Ee to radiate synchrotron keV photons:

 $E_e = (70 \text{ TeV}) B^{-1/2}_{-5} E^{1/2}_{keV}$

Mean Ee to IC scatter CMB to TeV photons:

 $E_e = (18 \text{ TeV}) E^{1/2}_{TeV}$ ($E_{keV} = 0.06 B_{-5} E_{TeV}$) Hofmann 200

Synchrotron τ , scattering CMB to $E_{\gamma}=10^{12}~E_{TeV}~eV$

 $\tau(E_v) \sim (4.8 \text{ kyr}) \text{ B}^{-2} - 5 \text{ E}_{\text{TeV}}^{-1/2}$

Live-time of keV-emitting electrons

 $\tau(E_x) = (1.2 \text{ kyr}) \text{ B}^{-3/2} - 5 \text{ E}_{\text{keV}}^{-1/2}$

 $(E_{keV} = 0.06 B_{-5} E_{TeV})$

- The IC-electron survive longer: relic emission
- The size of the VHE sources is much larger than the X-ray ones in evolved systems

- Largest population (>20 identified PWNe)
- young: age<10⁵ yrs energetic: Edot >10³⁵ erg/s
- Populations Studies
- I. Old systems in which we observe leptonic cooling
- II. Young systems showing very good correlations with X-ray an

Required Ee to radiate synchrotron keV photons:

 $E_e = (70 \text{ TeV}) B^{-1/2}_{-5} E^{1/2}_{keV}$

Mean Ee to IC scatter CMB to TeV photons:

 $E_e = (18 \text{ TeV}) E^{1/2}_{TeV}$ ($E_{keV} = 0.06 B_{-5} E_{TeV}$) Hofmann 2009

Synchrotron τ , scattering CMB to $E_{\gamma}=10^{12}~E_{TeV}~eV$

 $\tau(E_v) \sim (4.8 \text{ kyr}) \text{ B}^{-2} - 5 \text{ E}_{\text{TeV}}^{-1/2}$

Live-time of keV-emitting electrons

 $\tau(E_x) = (1.2 \text{ kyr}) \text{ B}^{-3/2} - 5 \text{ E}_{\text{keV}}^{-1/2}$ $(E_{\text{keV}} = 0.06 \text{ B}_{-5} E_{\text{TeV}})$

- The IC-electron survive longer: relic emission
- The size of the VHE sources is much larger than the X-ray ones in evolved systems

- Largest population (>20 identified PWNe)
- young: age<10⁵ yrs energetic: Edot >10³⁵ erg/s
- Populations Studies
- I. Old systems in which we observe leptonic cooling
- II. Young systems showing very good correlations with X-ray an

Required Ee to radiate synchrotron keV photons:

 $E_e = (70 \text{ TeV}) B^{-1/2}_{-5} E^{1/2}_{keV}$

Mean Ee to IC scatter CMB to TeV photons:

 $E_e = (18 \text{ TeV}) E^{1/2}_{TeV}$ ($E_{keV} = 0.06 B_{-5} E_{TeV}$) Hofmann 2000

Synchrotron τ , scattering CMB to $E_{\gamma}=10^{12}~E_{TeV}~eV$

 $\tau(E_V) \sim (4.8 \text{ kyr}) \text{ B}^{-2}\text{--}5 \text{ E}_{\text{TeV}}^{-1/2}$

Live-time of keV-emitting electrons

 $\tau(E_x) = (1.2 \text{ kyr}) \text{ B}^{-3/2} - 5 \text{ E}_{\text{keV}}^{-1/2}$

- The IC-electron survive longer : relic emission
- The size of the VHE sources is much larger than the X-ray ones in evolved systems

Detectable flux/gamma-ray emission depends on:

- The age of the pulsar/PWNe
- —The initial spin-down energy
- The magnetization fraction $\eta = \sigma/(\sigma+1)$
- —The injection spectrum and photon field

Detectable flux/gamma-ray emission depends on:

- The age of the pulsar/PWNe
- The initial spin-down energy
- The magnetization fraction $\eta = \sigma/(\sigma+1)$
- The injection spectrum and photon field

Detectable flux/gamma-ray emission depends on:

- The age of the pulsar/PWNe
- —The initial spin-down energy
- The magnetization fraction $\eta = \sigma/(\sigma+1)$
- The injection spectrum and photon field

Detectable flux/gamma-ray emission depends on:

- The age of the pulsar/PWNe
- The initial spin-down energy
- The magnetization fraction $\eta = \sigma/(\sigma+1)$
- —The injection spectrum and photon field

Vela X: d=300 pc

r=0.5-4 pc : very inner part of the PWN

Detection of the peak : determination of B!

Young PWNe "similar" to the Crab Nebula

Crab has a very large B but also spin-down power! (G0.9+01, MSH 15-52, G21.5-0.9, Kes 75, ...)

 $L_{Crab}(1-10 \text{ TeV}) \sim 3x10^{34} \text{ erg/s}$ $\dot{E}_{Crab} \sim 4.6x10^{38} \text{ erg}$

G21.5/PSR J1833-1034:

 τ =4.7 kyr, Edot=33x10³⁶ erg/s, d~5kpc

 $L(1-10 \text{ TeV}) = 3.7e^{33} \text{ erg/s}$

B~25 uG

kes75/PSR J1848-0258:

τ=723 yr, Edot=8.3x10³⁶ erg/s, d~6kpc

 $L(1-10 \text{ TeV}) = 6e^{33} \text{ erg/s}$

B~10 uG

Young PWNe "similar" to the Crab Nebula

Crab has a very large B but also spin-down power! (G0.9+01, MSH 15-52, G21.5-0.9, Kes 75, ...)

L_{Crab}(1-10 TeV) ~3x10³⁴ erg/s Ė_{Crab} ~ 4.6x10³⁸ erg

B far from equipartition: Particle dominated nebulae Are all TeV PWNe particle dominated?

G21.5/PSR J1833-1034:

 τ =4.7 kyr, Edot=33x10³⁶ erg/s, d~5kpc

 $L(1-10 \text{ TeV}) = 3.7e^{33} \text{ erg/s}$

B~25 uG

kes75/PSR J1848-0258:

τ=723 yr, Edot=8.3x10³⁶ erg/s, d~6kpc

 $L(1-10 \text{ TeV}) = 6e^{33} \text{ erg/s}$

B~10 uG

E. de Oña Wilhelmi - HEPRO IV Heidelberg 2013

E. de Oña Wilhelmi - HEPRO IV Heidelberg 2013

E. de Oña Wilhelmi - HEPRO IV Heidelberg 2013

E. de Oña Wilhelmi - HEPRO IV Heidelberg 2013

Source Type: Relic PWNe

E. de Oña Wilhelmi - HEPRO IV Heidelberg 2013

Source Type: Relic PWNe

Source Type: Relic PWNe

Source Type: Binary Systems

- Point-like Sources at VHE: neutron star or black hole + massive companion
- Modulation of the VHE due to their interaction (6) Observed in radio, X-ray, HE and VHE
- Difficult to reconcile all observations
- Not a unique behavior: Ej. LS 5039 vs IFGL J1018.6

	Flux (% Crab)	D (Kpc)	Flux variability (HE/VHE)	Periodic
LSI +61 303	0-15	2	yes/yes	yes (~I month)
LS 5039	5-15	2.5	yes/yes	yes (~4 days)
PSR B1259-63	0-10	1.5	yes/yes	yes (~3.4 years)
HESS J0632+057	0-3	1.5	no/yes	yes (~300 days)
Cyg X-I	0-10	2.2	yes/yes(?)	no
IFGL J1018.6-589	5-15	5	yes/?	yes (~16 days)

Right statement (J2000)

HESS J1018 A = 1FGL 1018.6-5859

og Tid

HESS J1018 A = 1FGL 1018.6-5859

Discovered in the GPS...

HESS J1018 A = IFGL 1018.6-5859

IFGL J1018.6-589

- Discovered in the Fermi LAT data
- Compact object + Massive star O6V((f))
- Period = 16.6 days
- Orbital Parameters still unknown
- (Periodic) Variability observed too in X-ray and radio

IFGL J1018.6-589

- Discovered in the Fermi LAT data
- Compact object + Massive star O6V((f))
- Period = 16.6 days
- Orbital Parameters still unknown
- (Periodic) Variability observed too in X-ray and radio

HESS J1018-589

IFGL J1018.6-5856

Compact object + O6V((f))

Compact object +O6V((f))

 $L_{GeV} = 2 \times 10^{35} (d/2.5)^2 \text{ erg/s}$ $L_{Xray} = 5 \times 10^{34} (d/2.5)^2 \text{ erg/s}$ $L_{VHE} = 1 \times 10^{33} (d/2.5)^2 \text{ erg/s}$

 $L_{GeV} = 8 \times 10^{35} \text{ (d/5)}^2 \text{ erg/s}$ $L_{Xray} = 2 \times 10^{33} \text{ (d/5)}^2 \text{ erg/s}$ $L_{VHE} = 1 \times 10^{33} \text{ (d/5)}^2 \text{ erg/s}$

Shocked stellar wind

New source types?

HESS J1747-248 Abramowski et al, 2011

New source types?

New source types?

Eta Carina Abramowski et al, 2012

The (near) future

- CTA is an initiative of the 3 large Cherenkov installations, MAGIC, HESS & VERITAS (+ a large number of independent researchers)
- 3-size telescopes are foreseen:
 Large Telescopes in a compact array (I-100 GeV)
 Medium-size telescopes (0.1 to 10 TeV)
 Small telescopes (>10 TeV)

*See also contribution by D.Williams

The (near) future

- CTA is an initiative of the 3 large Cherenkov installations, MAGIC, HESS & VERITAS (+ a large number of independent researchers)
- 3-size telescopes are foreseen:
 Large Telescopes in a compact array (I-100 GeV)
 Medium-size telescopes (0.1 to 10 TeV)
 Small telescopes (>10 TeV)

*See also contribution by D. Williams

Boosting:

- Increase sensitivity by up to a factor 10 at 1 TeV
- Increase the detection area for transients and at the highest energies
- Increase the angular resolution and maintaining a large FoV

New:

- Energy coverage from tens of GeV and beyond > 100 TeV
- 2 Sites, flexibility of operation, allowing for sub-arrays and multi-mode
- Operate as an observatory

- Obtain an homogeneous Galactic Sample for SNRs and PWNe
- Detect PeVatrons for E>50 TeV
- Resolve structures (i.e. RXJ 1713-3946)
- Diffusion of CRs
- Binaries and transient phenomena

- Obtain an homogeneous Galactic Sample for SNRs and PWNe
- Detect PeVatrons for E>50 TeV
- Resolve structures (i.e. RXJ 1713-3946)
- Diffusion of CRs
- Binaries and transient phenomena

- Obtain an homogeneous Galactic Sample for SNRs and PWNe
- Detect PeVatrons for E>50 TeV
- Resolve structures (i.e. RXJ 1713-3946)
- Diffusion of CRs
- Binaries and transient phenomena

- Obtain an homogeneous Galactic Sample for SNRs and PWNe
- Detect PeVatrons for E>50 TeV
- Resolve structures (i.e. RXJ 1713-3946)
- Diffusion of CRs
- Binaries and transient phenomena

Summary

- More than 120 sources discovered at TeV energies in the last 10 years
- We are getting closer to finally understand where the CR originates
- A very large population of PWNe discovered at VHE: are ALL PWNe particle dominated?
- The number of binary systems is steadily increasing although we still are puzzled by their behavior
- New surprises: Crab Pulsation, diffuse emission
- New source type still to be confirmed
- Hopefully CTA will soon open new and exciting new results

