Direct Detection of Self-interacting Dark Matter

Hai-Bo Yu University of California, Riverside

Kaplinghat, Tulin, HBY (1308.0618)+in preparation

Collisionless Cold Dark Matter

Large scales: great

• Small scales (dwarf galaxies, subhalos): ?

Core VS. Cusp Problem

THINGS (dwarf galaxy survey)

density profile: $\rho \sim r^{\alpha}$

predicted: α~-I

observed: $\alpha = -0.29 \pm 0.07$

- Observed central density shows cores
- Collisionless CDM-only simulations predict cusps

DM cores have been also observed in MW dwarfs and LSB

Too Big to Fail Problem

Milky Way dwarf galaxies

Boylan-Kolchin, Bullock, Kaplinghat (2011)

Biggest predicted satellites from collisionless CDM simulations

Brightest observed satellites in the MW

- Most massive subhalos in collisionless CDM simulations are too dense to host observed galaxies in the Milky Way
- On the other hand, it is easier for stars to form in massive subhalos

Self-interacting Dark Matter

These small scale anomalies can be solved if DM is strongly self-interacting
 Spergel, Steinhardt (1999)

UCI group: Rocha, Peter, Bullock, Kaplinghat, Garrison-Kimmel, Onorbe, Moustakas (2012); Peter, Rocha, Bullock, Kaplinghat (2012)

Harvard group: Vogelsberger, Zavala, Loeb (2012); Zavala, Vogelsberger, Walker (2012)

DM self-interactions lead to heat transfer and reduce central densities of DM halos

Astrophysics Summary

Evidence for DM self-interactions on dwarf galaxy scales

 $\sigma/m_{\rm X} \sim 0.1 - 10 \, {\rm cm^2/g} \, {\rm for} \, {\rm v} \sim 10 - 30 \, {\rm km/s}$

$$\Gamma \simeq n\sigma v = (\rho/m_X)\sigma v \sim H_0$$

Constraints: Bullet Cluster; elliptical halo shapes

 $\sigma/m_X < 1$ cm²/g for 3000 km/s (cluster);v ~ 300 km/s (group)

Peter, Rocha, Bullock, Kaplinghat (2012)

Challenges

A really large scattering cross section!
 a nuclear-scale cross section

$$\sigma$$
~ Icm² (m_X/g)~2×I0⁻²⁴ cm² (m_X/GeV)

For a WIMP: $\sigma \sim 10^{-38}$ cm² (m_X/100 GeV)

SIDM indicates a new mass scale

• How to avoid the constraints on large scales?

 $\sigma/m_X < 1$ cm²/g for v ~ 300 km/s (group),3000 km/s (cluster)

In particular, if σ~constant

Spergel, Steinhardt (1999)

Particle Physics of SIDM

in the perturbative and small velocity limit

• With a light mediator, DM self-scattering is velocity-dependent (like Rutherford scattering)

- DM is self-scattering on small scales (v~30 km/s)
- DM is collisionless on large scales (v~3000 km/s)

A Simplified SIDM Model

- DM is a Dirac fermion; Mediator is a vector
- DM self-interactions with a Yukawa potential

$$\begin{array}{c|cccc} \times & & \times & & \times & & V(r) = \pm \frac{\alpha_X}{r} e^{-m_\phi r} & \alpha_X = g_X^2/(4\pi) \\ & & & \sigma_T = \int d\Omega \left(1 - \cos\theta\right) \frac{d\sigma}{d\Omega} \end{array}$$

Other possibilities: Bellazzini, Cliche, Tanedo (2013) Boddy's talk

- Map out the parameter space $(m_X, m_{\phi}, \alpha_X)$
 - Solve small scale anomalies
 - Avoid constraints on large scales
 - Get the relic density right

Tulin, HBY, Zurek (2012) (2013)

Velocity-Dependence

• DM self-interactions are typically suppressed on large scales

 $\sigma/m_X \sim 0.1-10 \text{ cm}^2/\text{g}$ for $v \sim 10-30 \text{ km/s}$

 $\sigma/m_X < 1 \text{ cm}^2/g \text{ for } v \sim 300 \text{ km/s (group)},3000 \text{ km/s (cluster)}$

SIDM Parameter Space

• Shaded region: Explain small scale anomalies

- dw: dwarf (30 km/s); halo shapes: (300 km/s); cl: cluster (3000 km/s)
- SIDM predicts a I-100 MeV light force carrier
- Halo shape and Bullet Cluster constraints are sensitive to light SIDM

Light Mediators in Dark Sector

- The mediator may dominate the energy density of the Universe
- Decays to SM particles
- Decays to dark "neutrinos"
- Make hidden sector very cold (Boddy's talk)
- The mediator decays before BBN
- Maximal life for ϕ is ~ 1 second
- Minimal coupling between the dark sector and the SM
- A lower bound on direct detection cross section

A super model!

SM

DM relic density

DM self-scattering

DM direct detection

Portals to the Dark Sector

- Vector mediator $\phi \cdots X \cdots X \cdots Y(Z)$
- Focus on kinetic mixing case

$$rac{arepsilon_{\gamma}}{2}\,\phi_{\mu
u}F^{\mu
u}$$
 Holdom (1986)

The mediator only decays to electron/positron pairs

m_φ ~I-100 MeV

lifetime less than ~I second

$$\epsilon \gtrsim 10^{-10} \sqrt{10 \, \mathrm{MeV}/m_{\phi}}$$

DD cross section:

- suppressed by the tiny coupling
- enhanced by the small mediator mass

Constrains on Kinetic Mixing

Direct Detection of SIDM

The lower limit of direct detection cross section

- XENON100 excludes SIDM with a mass larger than 300 GeV
- Astrophysical constraints are sensitive to light SIDM
- They complement each other

Future XENONIT, SuperCDMS, LUX, PandaX can reach ~5 GeV SIDM

$$\sigma_{Xp}^{\rm SI} \approx 1.5 \times 10^{-24} \; {\rm cm}^2 \times \varepsilon_{\gamma}^2 \times \left(\frac{\alpha_X}{10^{-2}}\right) \left(\frac{m_\phi}{30 \; {\rm MeV}}\right)^{-4}$$

Direct Detection of SIDM

• The lower limit of direct detection cross section

$$\sigma_{Xp}^{\rm SI} \approx 1.5 \times 10^{-24} \ {\rm cm}^2 \times \varepsilon_{\gamma}^2 \times \left(\frac{\alpha_X}{10^{-2}}\right) \left(\frac{m_{\phi}}{30 \ {
m MeV}}\right)^{-4}$$

- XENON100 excludes SIDM with a mass larger than 200 GeV
- No CMB constraints

Direct detection experiments provide complementary searches for SIDM candidates

Direct Detection of SIDM

Explain signals?

Kaplinghat, Tulin, HBY in preparation

Conclusions

- SIDM predicts the existence of a I-100 MeV mediator
- Current and future direct detection experiments are exploring the "BBN parameter space"
- Astrophysical observations (halo shapes, the Bullet Cluster) probe light SIDM
- Direct detection experiments are more sensitive to heavy SIDM
- They are complement each other in the search for SIDM candidates

Complementarity

Snowmass report 1305.1605