Direct Detection of
 Self-interacting Dark Matter Hai-Bo Yu University of California, Riverside

Kaplinghat, Tulin, HBY (I308.06I8)+in preparation

Collisionless Cold Dark Matter

- Large scales: great

- Small scales (dwarf galaxies, subhalos): ?

CoreVS. Cusp Problem

- THINGS (dwarf galaxy survey)

density profile: $\rho \sim \sim^{\alpha}$ predicted: $\alpha \sim-1$ observed: $\alpha=-0.29 \pm 0.07$
- Observed central density shows cores
- Collisionless CDM-only simulations predict cusps

DM cores have been also observed in MW dwarfs and LSB

Too Big to Fail Problem

- Milky Way dwarf galaxies Boylan-Kolchin, Bullock, Kaplinghat (201I)

$$
V \sim \sqrt{\frac{G M_{<}}{r}}
$$

Biggest predicted satellites from collisionless CDM simulations

Brightest observed satellites in the MW

- Most massive subhalos in collisionless CDM simulations are too dense to host observed galaxies in the Milky Way
- On the other hand, it is easier for stars to form in massive subhalos

Self-interacting Dark Matter

- These small scale anomalies can be solved if DM is strongly self-interacting

Spergel, Steinhardt (1999)

UCI group: Rocha, Peter, Bullock, Kaplinghat, Garrison-Kimmel, Onorbe, Moustakas (2012); Peter, Rocha, Bullock, Kaplinghat (2012)

Harvard group:Vogelsberger, Zavala, Loeb (2012); Zavala,Vogelsberger,Walker (2012)
DM self-interactions lead to heat transfer and reduce central densities of DM halos

Astrophysics Summary

- Evidence for DM self-interactions on dwarf galaxy scales

$$
\begin{gathered}
\sigma / \mathrm{m}_{\mathrm{x}} \sim 0.1-10 \mathrm{~cm}^{2} / \mathrm{g} \text { for } \mathrm{v} \sim 10-30 \mathrm{~km} / \mathrm{s} \\
\Gamma \simeq n \sigma v=\left(\rho / m_{X}\right) \sigma v \sim H_{0}
\end{gathered}
$$

- Constraints: Bullet Cluster; elliptical halo shapes

$\sigma / m_{X}<1 \mathrm{~cm}^{2} / \mathrm{g}$ for $3000 \mathrm{~km} / \mathrm{s}$ (cluster); $\mathrm{v} \sim 300 \mathrm{~km} / \mathrm{s}$ (group)
Peter, Rocha, Bullock, Kaplinghat (20I2)

Challenges

- A really large scattering cross section!
a nuclear-scale cross section

$$
\sigma \sim \mathrm{Icm}^{2}(\mathrm{~m} \times / \mathrm{g}) \sim 2 \times 10^{-24} \mathrm{~cm}^{2}(\mathrm{~m} \times / \mathrm{GeV})
$$

For a WIMP: $\sigma \sim 10^{-38} \mathrm{~cm}^{2}(\mathrm{~m} \times / I 00 \mathrm{GeV})$
SIDM indicates a new mass scale

- How to avoid the constraints on large scales?
$\sigma / m_{X}<1 \mathrm{~cm}^{2} / \mathrm{g}$ for $\mathrm{v} \sim 300 \mathrm{~km} / \mathrm{s}$ (group), $3000 \mathrm{~km} / \mathrm{s}$ (cluster)

In particular, if $\sigma \sim$ constant

Particle Physics of SIDM

- SIDM indicates light mediators

$$
\sigma \approx 5 \times 10^{-23} \mathrm{~cm}^{2}\left(\frac{\alpha_{X}}{0.01}\right)^{2}\left(\frac{m_{X}}{10 \mathrm{GeV}}\right)^{2}\left(\frac{10 \mathrm{MeV}}{m_{\phi}}\right)^{4}
$$

- With a light mediator, DM self-scattering is velocity-dependent (like Rutherford scattering)

e		eα_{X}^{2}		X	Feng, Kaplinghat, Tu, HBY (2009)
	Visible		Hidden		Feng, Kaplinghat, HBY (2009)
			-------		Buckley, Fox (2009)
	Photon		Photon		Loeb, Weiner (2010)
		$e^{m \times v \gg m_{\phi} x}$		X	Tulin, HBY, Zurek (2012)(2013)

- DM is self-scattering on small scales ($\mathrm{v} \sim 30 \mathrm{~km} / \mathrm{s}$)
- DM is collisionless on large scales ($\mathrm{v} \sim 3000 \mathrm{~km} / \mathrm{s}$)

A Simplified SIDM Model

- DM is a Dirac fermion; Mediator is a vector
- DM self-interactions with a Yukawa potential

$$
\begin{array}{c|c|cc}
\mathrm{x} & \mathrm{x} & V(r)= \pm \frac{\alpha_{X}}{r} e^{-m_{\phi} r} \quad \alpha_{X}=g_{X}^{2} /(4 \pi) \\
\times & \mathrm{x}^{\prime} & \sigma_{T}=\int d \Omega(1-\cos \theta) \frac{d \sigma}{d \Omega}
\end{array}
$$

Other possibilities: Bellazzini, Cliche,Tanedo (2013) Boddy's talk

- Map out the parameter space ($\mathrm{m}_{\mathrm{x}}, \mathrm{m}_{\phi}, \alpha_{x}$)
- Solve small scale anomalies
- Avoid constraints on large scales
- Get the relic density right

Velocity-Dependence

- DM self-interactions are typically suppressed on large scales

$\sigma / m_{x} \sim 0.1-10 \mathrm{~cm}^{2} / \mathrm{g}$ for $v \sim 10-30 \mathrm{~km} / \mathrm{s}$
$\sigma / m_{x}<1 \mathrm{~cm}^{2} / \mathrm{g}$ for $\mathrm{v} \sim 300 \mathrm{~km} / \mathrm{s}$ (group), $3000 \mathrm{~km} / \mathrm{s}$ (cluster)

SIDM Parameter Space

- Shaded region: Explain small scale anomalies

 dw: dwarf ($30 \mathrm{~km} / \mathrm{s}$); halo shapes: ($300 \mathrm{~km} / \mathrm{s}$); cl: cluster ($3000 \mathrm{~km} / \mathrm{s}$)
- SIDM predicts a I-I00 MeV light force carrier
- Halo shape and Bullet Cluster constraints are sensitive to light SIDM

Light Mediators in Dark Sector

- The mediator may dominate the energy density of the Universe
- Decays to SM particles
- Decays to dark "neutrinos"
- Make hidden sector very cold (Boddy's talk)
- The mediator decays before BBN
- Maximal life for ϕ is \sim second

- Minimal coupling between the dark sector and the SM
- A lower bound on direct detection cross section A super model!

DM relic density

DM self-scattering

DM direct detection

Portals to the Dark Sector

- Vector mediator

- Focus on kinetic mixing case

$$
\frac{\varepsilon_{\gamma}}{2} \phi_{\mu \nu} F^{\mu \nu}
$$

- The mediator only decays to electron/positron pairs

$\mathrm{m}_{\phi} \sim 1-100 \mathrm{MeV}$
lifetime less than \sim I second
$\epsilon \gtrsim 10^{-10} \sqrt{10 \mathrm{MeV} / m_{\phi}}$
DD cross section:
- suppressed by the tiny coupling
- enhanced by the small mediator mass

Constrains on Kinetic Mixing

Bjorken, Essig, Schuster, Toro (2009)
Dent, Ferrer, Krauss (2012)

Direct Detection of SIDM

- The lower limit of direct detection cross section

- XENONIOO excludes SIDM with a mass larger than 300 GeV
- Astrophysical constraints are sensitive to light SIDM
- They complement each other

Future XENONIT, SuperCDMS, LUX, PandaX can reach $\sim 5 \mathrm{GeV}$ SIDM

$$
\sigma_{X_{p}}^{\mathrm{SI}} \approx 1.5 \times 10^{-24} \mathrm{~cm}^{2} \times \varepsilon_{\gamma}^{2} \times\left(\frac{\alpha_{X}}{10^{-2}}\right)\left(\frac{m_{\phi}}{30 \mathrm{MeV}}\right)^{-4}
$$

Direct Detection of SIDM

- The lower limit of direct detection cross section

- XENONIOO excludes SIDM with a mass larger than 200 GeV
- No CMB constraints

Direct detection experiments provide complementary searches for SIDM candidates

Direct Detection of SIDM

- Explain signals?

Kaplinghat, Tulin, HBY in preparation

Conclusions

- SIDM predicts the existence of a $\mathrm{I}-\mathrm{I} 00 \mathrm{MeV}$ mediator
- Current and future direct detection experiments are exploring the "BBN parameter space"
- Astrophysical observations (halo shapes, the Bullet Cluster) probe light SIDM
- Direct detection experiments are more sensitive to heavy SIDM
- They are complement each other in the search for SIDM candidates

Complementarity

Snowmass report I305.I605

