

The VERITAS Dark Matter Program

Benjamin Zitzer
High Energy Physics Division (HEP)
Argonne National Laboratory

TeVPA 2013 Irvine CA, Aug 28, 2013

VERITAS Introduction

- Very Energetic Radiation Imaging Telescope Array System
- Consists of ~100 scientists in five countries
- Full Array Operations since fall 2007
- Four 12m Davies-Cotton Telescopes in Southern AZ
- Upgrades:
 - Move of T1 in Summer 2009
 - Trigger Upgrade in November 2011
 - Camera Upgrade in Summer 2012

Support From:

US DOE
US NSF
SmithsonianInst.
STFC (UK)
SFI (Ireland)
NSERC (Canada)

Performance:

Energy Range: 0.85 - 30 TeV

(Post-Upgrade)

Energy Res: $\Delta E/E \sim 0.2$

Angular Res: ~0.1 deg (68%)

Angular Accuracy: 50 arcsec

FOV: 3.5 deg

Gamma Rays from Dark Matter

Dark Matter is well described theoretically by extensions of the Standard Model of Particle physics (Supersymmetry, Kaluza-Klein) by a Weakly Interacting Massive Particle (WIMP) in the mass range of 50 GeV - 10 TeV.

overproduction of

1		π^{\pm} , π^{0}		
	$\chi \chi \rightarrow Z^0 Z^0$	$Z^0 \rightarrow ll$, $\nu \bar{\nu}$, $q\bar{q} \rightarrow pions$	$p, e(\gamma)$	
1	$\chi\chi \to \tau^{\pm}$	$\tau^{\pm} \rightarrow \nu_{\tau} e^{\pm} \nu_{e}, \ \tau \rightarrow \nu_{\tau} W^{\pm} \rightarrow p, p, \text{pions}$	p, e, γ, ν	
	$\chi\chi \rightarrow \mu^+\mu^-$		O	Rapid energy loss of μ s in sun before decay results in sub-threshold ν s
#+ *x+	$\chi \chi \rightarrow \gamma \gamma$ $\chi \chi \rightarrow Z^0 \gamma$	Z^0 decay	$\varphi_{\underline{}}$	Loop suppressed Loop suppressed
• /	$\chi \chi \rightarrow e^+e^-$		$e_i(\gamma)$	Helicity suppressed
, , , , , , , , , , , , , , , , , , ,	$\chi\chi \to \nu D$		ν	Helicity suppressed (important for non-Majorana WIMPs?)
1. 7	$\chi \chi \rightarrow \phi \bar{\phi}$	$\phi \rightarrow e^+e^-$	e [±]	New scalar field wit
Λ™ > 2		internal/final state b inverse Compton		$m_{\chi} < m_{q}$ to explain large electron signal and avoid

- WIMP annihilation production -rays
 - Gamma-ray line from direct annihilation (higher order process)
 - •Gamma-ray continuum from hadronization
 - •Enhanced near M_{WIMP} from internal brem
 - •DM gamma-ray flux:

$$\frac{d\phi(E,\vec{\psi},\Delta\Omega)}{dE} = \left[\frac{\langle \sigma v \rangle}{8\pi m_{\chi}^2} \frac{dN(E,m_{\chi})}{dE}\right] J(\vec{\psi},\Delta\Omega)$$

(Nearly) All Roads lead to Gamma Rays!

Astrophysical Factor

Particle Physics

VERITAS Dark Matter Targets

<u>Target</u>	<u>Advantages</u>	<u>Disadvantages</u>		
Galactic Center	Close by, lots of DM	Large γ BG		
Fermi-LAT UIDs	Possibly local, known gamma-ray sources	Unknown distance, nature		
Galaxy Clusters	-Largest DM concentrations in universe	-very distant (weak signal) -very extended -possible γ BG		
Dwarf Galaxies	-High Mass/Light -No likely γ BG	DM distribution can be very uncertain		

VERITAS Dark Matter Targets

	<u>Target</u>	<u>Advantages</u>	<u>Disadvantages</u>	
	Galactic Center	Close by, lots of DM	Large γ BG	
	Fermi-LAT UIDs	Possibly local, known gamma-ray sources	Unknown distance, nature	
	Galaxy Clusters	-Largest DM concentrations in universe	-very distant (weak signal) -very extended -possible γ BG	
(Dwarf Galaxies	-High Mass/Light -No likely γ BG	DM distribution can be very uncertain	

Sorry to fans of Galaxy Clusters and Fermi-LAT Unidentified sources!

Observations of DSph Galaxies

- ☐ SDSS Coverage
- Classical dSphs

Advantages:

- Dark Matter dominated M/L ~ 200-1000
- Absence of known VHE backgrounds
- •Close (10s of kiloparsecs)
- Recent discovery of many dSphs by SDSS
- •Segue 1, at 23 +/- 2 kpc, discovered in 2006 in SDSS
- Segue 1 probably most DM dominated dSph known to date

Disadvantages:

- Small expected flux for standard flux modeling (w/smooth NFW, no boost, no velocity-dependent σ)
- Tidal disruption common makes DM estimation difficult.

Results of VERITAS DSph Observations:

Dwarf		Obs. Time [hrs]	Sig. [σ]	N _y 95%CL	E _{min} [GeV]	Flux UL [C.U.]
Segue	23	83	-1.34	92.1	150	0.15%
Ursa Minor	80	38	-1.1	64.8	380	0.52%
Draco	66	39	0.71	197.7	290	1.36%
Bootes	38	14	-0.31	65.9	200	0.81%
Wilman1	62	14	-0.15	97.6	200	1.62%

+ 26 hours = 109 hours

+ 27 hours = 65 hours

+ 19 hours = 58 hours

Total Observing time: ~260 hours!

DM Constraints from DSphs

Equation for cross-section:

$$<\sigma v>^{95\%CL}=rac{8\pi}{J(\Delta\Omega)}rac{N_{\gamma}^{95\%CL}m_{\chi}^{2}}{t_{obs}\int_{0}^{m_{\chi}}A_{eff}(E)rac{dN_{\gamma}}{dE}dE}$$

 $N_{\nu}^{95\%}$: counts UL, calculated from Rolke

 $A_{eff}(E)$: Effective area, function of array

Elevation, Azimuth, and background noise $J(\Delta\Omega)$: line of sight integral of DM density squared t_{obs} : Observation time on target

 dN_{V}/dE : Single annihilation spectra for a WIMP

Segue 1 Results

CR electron excess seen by Pamela/Fermi/HESS could be explained by a Sommerfield enhancement

Arises when two DM particles interact though a attractive potential, mediated by a third particle.

Velocity dependent, modifying cross-section

Constraints on models of Lattanzi & Silk (2009), bottom left, and Arkani-Hamed et al (2009), bottom right

Constraints on overall boost factor, upper right

Sgr A* Observations with VERITAS

The Galactic Center ($SgrA^*$) is a large zenith angle (LZA) source for VERITAS

- The Bad: This raises the energy threshold for SgrA* Observations
 - E_{th} ~ 2 TeV (possibly lower w/ upgrade data)
- ·The Good: Increased sensitivity at higher energies
- ·Drawback of increased angular resolution is offset by 'Disp' method

Sgr A* Observation Strategy

Increased CR density in GC, diffuse gamma-ray emission, SNR & PWNe in GC

Two different ON/OFF pointing

Define signal/bg regions in ON/OFF maps, excluding SgrA* and other gamma-ray sources

Use OFF map to determine energy-dependent acceptance

DM Constraints from the Galactic Center

Future Work: Combined DM Analysis

DM results shown previously do not use individual photon information, one limit per source

Event Weighting method used for Fermi-LAT data of DSphs (Geringer-Sameth and Koupishappas, 2011)

- · Authors working with VERITAS Collaboration
- •Each event is assigned a weight as a function of energy and position, increased sensitivity
- •Events closer to target with lower energy more likely to be from DM annihilation
- •Sum of weights is test statistic to test hypothesis of events existing due to DM annihilation with given MX and $\langle \sigma v \rangle$
- Able to combine multiple sources and instruments into a single DM limit
- •Predicted results of completed VERITAS DM program, (left) with 500 hours on a Segue-like DSph

Conclusions

VERITAS dark matter program is ongoing:

- ·Observations of dSphs, GC, Fermi UNIDs, galaxy clusters
- ·2012-2013 observing season finished; first with upgraded cameras
- ·Lowered energy threshold, improved sensitivity for all DM masses

Future Plans:

- ·Continuing observations of dark matter targets
- ·Significant portion of VERITAS observing time
- ·Analysis of dSphs for combined analysis paper ongoing (260 hours!)
 - •~60 hours of post-upgrade data
 - ·~100 hours from Segue 1
 - ·Limits soon, including line search
- · Galactic center analysis ongoing