

Experiment Support

Ideal information system - CMS

Andrea Sciabà

IS meeting with users January 9, 2013

CERN IT Department CH-1211 Geneva 23 Switzerland www.cern.ch/it

Andrea Sciabà

Service discovery

- SAM VO feed generation: IS used to find CEs and SEs to be tested by SAM
- Site visibility: SSB publishes whether site CEs are visible in BDII

Software installation

- IS used to publish installed CMSSW releases
- Information on OS, maximum wallclock time, RAM is used by software installation jobs

SE capacity

- Used, free, total online/nearline space at sites shown in dedicated SSB view
- Not used in production as the information cannot be trusted

CE status

 CE status, (max) total jobs, max CPU time, close SE, estimated response time, etc. used for gLite WMS CE matchmaking (soon to become irrelevant)

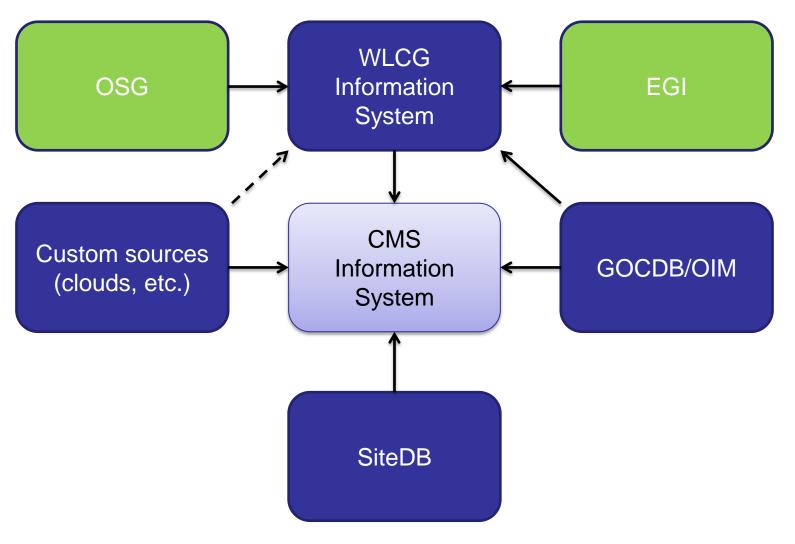
Future CMS use cases

- Publish information for new services
 - E.g. squid for Frontier and CVMFS
 - not an experiment-specific solution if possible!
- Publish information for opportunistic resources
 - E.g. HPC, clouds, non-WLCG sites
 - In other words, plug-in custom sources of information
- Publish information useful for multicore jobs
 - Need to know if resources offered by sites are compatible with the jobs

Soon obsolete use cases

- Software installation
 - With the full adoption of CVMFS, software tags will become unnecessary
- CE status
 - With the decommissioning of the gLite WMS, matchmaking against dynamic CE attributes will not be done anymore

- Resource discovery must be the main purpose
- Existence of resources
 - List sites and resources at sites
 - Never changes between service commission and decommission
 - Must always be available
- Resource properties
 - Everything which is needed to use a service
 - Generated by the service itself
 - Resilient to glitches and short downtimes
 - Guaranteed to be correct
- Aggregates information from EGI, OSG and NG



- Other requirements
 - REST interface with standard output formats
 - A simple query language (hide LDAP!)
 - A good client
- Experiment-specific information
 - VO site names, custom services, experiment contacts, etc.
 - Stored in VO-specific databases (e.g. SiteDB)
- GOCDB/OIM
 - Keep using for administrative information, downtimes and basic service discovery
 - The service discovery could be enhanced with more properties

CMS view

CERN IT Department CH-1211 Geneva 23 Switzerland www.cern.ch/it

Andrea Sciabà

Other considerations

- The schema is an implementation detail
 - CMS does not <u>require</u> GLUE 2.0 but it is natural to assume that a common schema helps to provide a uniform description of WLCG resources across federated grid projects
- A correct status of storage and compute resources is "nice to have"
 - Validation efforts for dynamic information are welcome even if not critical
 - Adopt a more "honest" approach: publish information only if it is accurate
 - SE capacity however is particularly important and may profit from storage accounting developments

Conclusions

- A lack of an information system would cause a suboptimal usage of resources (including operational effort)
- The information system (together with GOC/OIM) should provide resource discovery and publish properties for WLCG sites and services
 - If the IS is infrastructure-specific, WLCG should provide an aggregator
 - It must not be VO-specific