LAGUNA-LBNO HP-PS

Rende Steerenberg, Javier Alabao, Javier Alabao, Androula Alekou, Fanouria Antoniou, Michael Benedikt, Roland Garoby, Frank Gerigk, Brennan Goddard, Christos Lazaridis, Yannis Papaphilippou, Angelina Parfenova,

The HP-PS basics

- High Power Protons Synchrotron:
 - 2 MW beam power (@ 30 50 GeV)
 - Dedicated to neutrinos for LAGUNA-LBNO
 - Keep in mind possible use for LHC in future
- 3-fold symmetric machine is considered:
 - About 1 km in circumference
 - Imaginary gamma transition
 - Injection/Extraction straight section
 - Collimation straight section
 - RF straight section

Beam Power

$$P = qf_r N_p E_k$$

- High average beam power
 - □ High repetition rate
 - Increased power supply voltage, electrical power, eddy currents, cooling, cost
 - ☐ High Energy
 - Increased circumference (and/or high-field magnets), power consumption, cost
 - ☐ High particle population per pulse
 - □ Increased linac pulse, beam loss, radio-activation

Different Options explored

	50 GeV	65 Ge ∀	50 GeV	30 GeV
Parameters	PS2	HE HP- PS	SF HP- PS	LE HP- PS
Circumference [m]	1346.4	1520	1174	
Protons/pulse [10 ¹⁴]	1.1	1.9	2.5	4.2
Harmonic number	180	202	156	
Number of bunches	168	196	150	
Protons/bunch [1011]	6.5	10.4	18.0	30.2
Rel. β/γ @ inj.	0.98/5.26			
Norm. emit. H/V [μm]	9/6	7.0/5.9	11.1/9.3	18.7/15.6
SC tune-shift H/V	-0.13/-0.2	-0.2/-0.2		

$$\Delta Q_{x,y} = -\frac{r_0 N_p C}{2(2\pi)^{3/2} \sigma_z \beta \gamma^2 \epsilon_{x,y}}$$

Beam considered as for PS2 with a 25ns bunch structure, although this is not necessary

- Machine filled with bunches leaving a 150ns gap for kicker rise/fall time (300ns for PS2)
- Assumed that bunch length is scaled with square root of harmonic number
- For keeping space-charge tune-shift below -0.2, vertical emittance increased accordingly, and transverse acceptance reduced
 - Large increase of emittances for LE HP-PS, whereas for HE HP-PS even smaller than PS2

SPL options/parameters

PARAMETER CONSOLIDATION:

SINCE 2010

design version	LP-SPL	HP-SPL low-current	HP-SPL high-current
kinetic energy	4 GeV	5 GeV	5 GeV
beam power	0.144 MW	4 MW	4 MW
repetition rate	2 Hz	50 Hz	50 Hz
beam pulse length	0.9 ms	0.8 ms	0.4 ms
average pulse current	20 mA	20 mA	40 mA
peak pulse current	32 mA	32 mA	64 mA
chopping ratio	62%	62%	62%
protons p. pulse	1.13×10 ¹⁴	1×10 ¹⁴	Ix10 ¹⁴
peak power/cavity	0.5 MW	0.5 MW	I MW

LP-SPL intensity

POSSIBLE MODIFICATIONS TO INCREASE INTENSITY

- easy & cheap: higher rep-rate or longer pulse length (impact on modulator stored energy, increase in cryogenic load, little difference for klystrons),
- expensive: higher pulse current (means higher peak power, direct impact on klystron price, higher coupler peak power + all of the above), if absolutely necessary 40 mA can be possible, but not higher,
- very expensive: higher energy (longer tunnel, more hardware...)

Injection / Extraction

- Should be easier than PS2 injection/extraction LSS
 - Fewer beam transfer requirements
 - Extract only at 50 GeV
- The well-worked out H- injection system designed for PS2 at 4 GeV can basically be plugged into HP-PS
 - 24 m central drift
 - 1 m space for laser stripping elements
- Fast extraction in the same LSS possible
 - 12 m for the outer drifts
 - Imposes large aperture doublet quadrupoles
- Can we already start working with basic parameter set
 - 4 GeV, 1 ms injection; 50 GeV extraction, rise time?
 - Target emittances??

Collimation

Lessons learned in the PS2 for the HP-PS

- In order to optimize the collimation system performance its design should be carried in parallel with lattice design, collective effects studies, etc.
- A lattice and an aperture model are the basic ingredients to start producing beam loss maps. Have a code ready.
- If apertures like PS2, an available phase advance of $\mu = 150^{\circ}$ for placing secondaries is desirable.
- Close collaboration from the beginning between the optical design of the collimation system and FLUKA simulations to provide loss thresholds. The 1 W/m is just a figure of merit, final validation should simulating the full geometry of the magnet.
- FLUKA studies showed no strong preference between light and heavy materials for PS2, but for a higher power in HP-PS it might be advisable to go to lighter materials. TBC by FLUKA simulations.
- If HP-PS features a racetrack shape the momentum collimation might be an issue.
- Space charge simulations would be needed at some point to estimate the halo population. At first approximation PS measurements could be scaled up.
- Failures scenarios. Collimation system withstand full beam impacting it (misfiring kicker, etc.).

Next Steps

- Consolidate the basic options and optics (Fannouria & Andoula).
- Investigate further the Super Ferric options
 - Support form L. Bottura and his team (Javier)
- Injection/Extraction (Angelina & Brennan)
- Collimation (Christos, ..)
- RF cavities etc (BE/OP PJAS + Elena, ...).