Nuclear Physics at CERN

David Jenkins, Department of Physics THE UNIVERSITY of York

with thanks to Liam Gaffney, Peter Butler, Maria Borge, Dave Lunney, Jon Billowes, Thomas Cocolios, Nicola Colonna, Andrei Andreyev

Lecture 2: Accelerated radioactive ion beams

- -Accelerated radioactive beams
- -The REX-ISOLDE facility
- -The HIE-ISOLDE project

Production of charged ions for accelerator

REX-ISOLDE

Peter Butler http://ns.ph.liv.ac.uk/pab/EFermi.pdf

Radioactive beams at REX-ISOLDE (CERN)

World ISOL accelerated beams

FACILITY	DRIVER	POWER	USER BEAMS ACCELERATED	ENERGY
LOUVAINE- LA-NEUVE (BELGIUM) 1989-2008	30 MeV protons	6 kW	⁶ He, ⁷ Be, ^{10,11} C, ¹³ N, ¹⁵ O, ¹⁸ F, ^{18,19} Ne, ³⁵ Ar	10 MeV/u cyclotron
HRIBF Oak Ridge (USA) 1997	100 MeV p, d, α (-ve ion source)	1 kW	⁷ Be, ^{17,18} F, ⁶⁹ As, ⁷⁶⁻⁷⁹ Cu, ^{67,83-85} Ga, ^{78,82-86} Ge, ⁶⁹ As, ^{83,84} Se, ⁹² Sr, ^{117,118} Ag, ^{126,128,132-136} Sn, ¹²⁹ Sb, ^{129,132,134,136} Te	2 - 10 MeV/u tandem
ISAC TRIUMF (CANADA) 2000	500 MeV protons	50 kW	^{8,9,11} Li, ¹¹ Be, ¹⁸ F, ^{20-22, 24-29} Na, ²³ Mg, ²⁶ Al	1.5 - 6 MeV/u linac
SPIRAL GANIL (FRANCE) 2001	100 MeV/ u heavy ions	6 kW	^{6,8} He, ^{14,15,19-21} O, ¹⁸ F, ^{17-19,23-26} Ne, ^{33-35, 44,46} Ar, ⁷⁴⁻⁷⁷ Kr	2 - 25 MeV/u cyclotron
REX ISOLDE (CERN) 2001	1.4 GeV protons	3 kW	^{8,9,11} Li, ¹⁰⁻¹² Be, ¹⁰ C, ¹⁷ F, ²⁴⁻²⁹ Na, ²⁸⁻³² Mg, ^{61,62} Mn, ⁶¹ Fe, ⁶⁸ Ni, ^{67-71,73} Cu, ^{74,76,78,80} Zn, ⁷⁰ Se, ^{88,92} Kr, ⁹⁶ Sr, ¹⁰⁸ In, ^{106,108,110} Sn, ^{122,124,126} Cd, ^{138,140,142,144} Xe, ^{140,142,148} Ba, ¹⁴⁸ Pm, ¹⁵³ Sm, ¹⁵⁶ Eu, ^{182,184,186,188} Hg, ^{202,204} Rn	0.3 - 3 MeV/u linac

Example I: Octupole collectivity

Static Electric Dipole Moment implies CP-violation

Schiff Theorem: neutral atomic system of point particles in electric field readjusts itself to give zero E field at all charges.

BUT: finite size of nucleus can break the symmetry

|d(¹⁹⁹Hg)| < 3.1×10⁻²⁹ e cm (*Griffith et al PRL 102 (2009) 101601*) In many cases provides best test extensions of the Standard Model that violate CP symmetry.

Nuclear pear-shapes can also enhance the "Schiff moment" by ~ 3 orders of magnitude Search candidates are odd-A Rn [TRIUMF] and Ra [ANL, ISOLDE]

Peter Butler

Octupole enhanced atomic EDM moment

 $2^{\lambda} \begin{array}{l} \lambda = 2 \dots Quadrupole \\ \lambda = 3 \dots Octupole \end{array}$

Octupole correlations enhanced at magic numbers: **34, 56, 88, 134**

Exotic regions of the Segré chart, so far inaccessible.

Radioactive Ion Beams are the key

Microscopically... Intruder orbitals of opposite parity and ΔJ , $\Delta L = 3$ close to the Fermi level $(l+3)^{-\pi}_{(j+3)}$ **ε**_F l_j^{π}

²²⁰Rn and ²²⁴Ra lie near Z=88, N=134 $\pi (f_{7/2} \rightarrow i_{13/2}) \ \nu (g_{9/2} \rightarrow j_{15/2})$

Nuclei take on a "pear" shape

Reflection asymmetric

- β_3 -vibration
- Static β_3 -deformation
- Rigid β_3 -deformation...

Signatures...

Odd-even staggering, negative parity

Parity doublets in odd-A nuclei

Enhanced El transitions

Large E3 strength $\rightarrow B(E3; 3^- \rightarrow 0^+) = \langle 0^+ ||E3||3^- \rangle^2$

Radon-220 and Radium-224

[ref] J.F.C. Cocks et al. Phys. Rev. Lett. 78 (1997) and Nucl. Phys. A 645 (1999)

Coulomb Excitation

MINIBALL @ REX-ISOLDE

MINIBALL

- Array of HPGe of 8 triple clusters
- 6-fold segmentation for positioning
- $\epsilon > 7\%$ for 1.3MeV γ -rays

- Particle ID in a Double-Sided Si Strip Detector.
- Event by event Doppler correction.
- $|7^{\circ} < \theta_{lab} < 54^{\circ}$

Particle-gamma coincidences

Analysis - ²²⁴Ra: Ni/Sn

Analysis - ²²⁰Rn: Ni/Sn

Analysis - ²²⁰Rn: High/Low θ

Analysis - ²²⁴Ra Gosia

16 free matrix elements + 6 normalisation factors

[6] H. Ton et al., Nucl. Phys. A 155, 235 (1970)

75

Results - 224Ra

- Consistent with rotational model
- Unstretched E3 matrix elements are nonzero. Rot-vib model predicts these vanish
- Coupled with level energy data, we observe a static octupole deformation in ²²⁴Ra

Analysis - 220Rn Gosia

15 free matrix elements + 6 normalisation factors

"Experiment"	Number and type of data
Multi-nucleon transfer ^[1,2] ²²⁶ Ra(⁵⁸ Ni, ⁶⁰ Ni) ²²⁴ Ra ²³² Th(¹³⁶ Xe, ¹²⁸ Te) ²²⁴ Ra Alpha, alpha-prime ^[3] ²²⁶ Ra(α, α '2n) ²²⁴ Ra Alpha(beta)-decay ^[4] ²²⁸ Th(²²⁴ Fr) $\rightarrow \alpha(\beta)$	Branching ratios (1 ⁻ , 5 ⁻ , 7 ⁻) 3
Delayed-coincidence ^[5,6]	Lifetimes (2+) 1
Cd/Sn/Ni high CoM range 22.1° < θ _{lab} < 37.8°	γ-ray yield 2 + 8 + 5
Cd/Sn/Ni low CoM range $37.9^{\circ} < \theta_{lab} < 51.8^{\circ}$	γ-ray yield 2 + 8 + 5
Total	34 data points

Poynter *et al.*, Phys. Lett. B **232**, 447 (1989)
J.F.C. Cocks *et al.*, Nucl. Phys. A **645**, 61 (1999)
Marten-Tölle *et al.*, Z. Phys. A **336**, 27 (1990)
W. Kurcewicz, *et al.*, Nucl. Phys. A **289** (1977)
W.R. Neal and H.W. Kraner, Phys. Rev. **137**, **B**1164 (1965)
H. Ton *et al.*, Nucl. Phys. A **155**, 235 (1970)

Results - 220Rn

- Consistent with rotational model.
- No information on unstretched E3.
- Larger data set required to determine if <1-||E3||2+> or <1-||E3||4+> vanish.
- Not definitive determination of collective mode, dynamic (vibrational) or static (rotational) from Q_3 alone.
- δE and Δi_x implies a coupling of an octupole phonon to the even-spin rotational band.
- Magnitude of Q_3 consistent with dynamic picture, similar to $Q_3(^{208}\text{Pb})$ and $Q_3(^{232}\text{Th})$
- Dynamic collectivity in ²²⁰Rn

²²⁰Rn - Vibrational?

L.P. Gaffney et al., Nature 497, 199 (2013)

Discussion and Interpretation

Discussion and Interpretation

The Facility for Antiprotons and Ion Research

Share-holders

In the process...

• 3.5·10¹¹ ²³⁸U²⁸⁺/s (DC) @ 1.5 GeV/u

Primary Beams

• 5.10¹¹ ²³⁸U²⁸⁺ (pulsed)

@ 1 GeV/u

• factor **100-1000** in intensity over present

Secondary Beams

- Broad range of radioactive beams up to 1.5 GeV/u
- up to factor 10 000 in intensity over present

The SPIRAL2 Project

EURISOL

Energy Upgrade:

The HIE-ISOLDE project construction of the SC LINAC to upgrade the energy of the post-accelerated radioactive ion beams to **5.5 MeV/u in 2015** and **10 MeV/u by 2017**

> Intensity Upgrade: The design study for the intensity upgrade, also part of HIE-ISOLDE, started in 2011, and addresses the technical feasibility and cost estimate for operating the facility at 10 kW once LINAC4 and PS Booster are online.

Increase in REX energy from 3 to 10 MeV/u (first step in increase to 5.5 MeV/u) ~2013

Increase proton intensity 2 → 10 kW (LINAC4, PS Booster upgrade) – primary target upgrade ~2014

Replace PS Booster by (Low Power) SPL $10 \rightarrow 70 \text{ kW} \sim 2016$

SPL-ISOLDE→ EURISOL

HIE-ISOLDE construction

Transfer reactions

THE UNIVERSITY of York

Inverse kinematics - wide applications

The heavy ion storage ring TSR MPIK Heidelberg

TSR installation

- TSR installation above a cable duct
- Tilted beam line coming up from the machine

00

M. Grieser et al. Eur. Phys. J. Special Topics 207, 1–117 (2012)

In-Ring - high luminosity achieved thru multiple beam passes (~1 MHz), important for reaction experiments, and laser measurements of static properties of exotic nuclei.

20-30 keV resolution for (d,p)

50-70 keV resolution for (C,C')

direct scatter detection possible

The field – uniformity is key

THE UNIVERSITY of York

The HELIOS approach, backward hemisphere

Negative-Q-value reaction, target at $\Delta z = 0 m$

- There is no kinematic compression for a fixed distance Δz. The excitation energy in the lab. and c.m. are related by only an additive constant
- The kinematic shift in Δz is linear and modest [<15 keV/mm for (d,p) at 2 T, Δz resolution in HELIOS <1 mm]
- PID through cyclotron period, energy independent, readily identify ions with energies as low as ~200 keV

$$E_{\rm cm} = E_{\rm lab} + \frac{m}{2} V_{\rm cm}^2 - \frac{m V_{\rm cm} z}{T_{\rm cyc}}$$

THE UNIVERSITY of York