

Lecture 2:Accelerated radioactive ion beams

-Accelerated radioactive beams
-The REX-ISOLDE facility
-The HIE-ISOLDE project

Production of charged ions for accelerator

REX-ISOLDE

Radioactive beams at REX-ISOLDE (CERN)

World ISOL accelerated beams

FACILITY	DRIVER	POWER	USER BEAMS ACCELERATED	ENERGY
LOUVAINE-LA-NEUVE (BELGIUM) 1989-2008	30 MeV protons	6 kW	${ }^{6} \mathrm{He},{ }^{7} \mathrm{Be},{ }^{10,11} \mathrm{C},{ }^{13} \mathrm{~N},{ }^{15} \mathrm{O},{ }^{18} \mathrm{~F},{ }^{18,19} \mathrm{Ne},{ }^{35} \mathrm{Ar}$	$10 \mathrm{MeV} / \mathrm{u}$ cyclotron
HRIBF Oak Ridge (USA) 1997	$\begin{aligned} & 100 \mathrm{MeV} \\ & p, d, \alpha \\ & \text { (-ve ion } \\ & \text { source) } \end{aligned}$	1 kW	${ }^{7} \mathrm{Be},{ }^{17,18} \mathrm{~F},{ }^{69} \mathrm{As}$, ${ }^{76-79} \mathrm{Cu},{ }^{67,83-85} \mathrm{Ga}$, ${ }^{78,82-86} \mathrm{Ge},{ }^{69} \mathrm{As},{ }^{83,84} \mathrm{Se},{ }^{92} \mathrm{Sr},{ }^{117,118} \mathrm{Ag}$, ${ }^{126,128,132-136} \mathrm{Sn},{ }^{129} \mathrm{Sb},{ }^{129,132,134,136} \mathrm{Te}$	$2-10 \mathrm{MeV} / \mathrm{u}$ tandem
ISAC TRIUMF (CANADA) 2000	500 MeV protons	50 kW	$\begin{aligned} & 8,9,11 \mathrm{Li},{ }^{11} \mathrm{Be},{ }^{18} \mathrm{~F}, \\ & 20-22,{ }^{24-29} \mathrm{Na},{ }^{23} \mathrm{Mg},{ }^{26} \mathrm{Al} \end{aligned}$	1.5-6 MeV/u linac
SPIRAL GANIL (FRANCE) 2001	$100 \mathrm{MeV} /$ u heavy ions	6 kW	$\begin{aligned} & \hline 6,8 \mathrm{He},{ }^{14,15,19-21 \mathrm{O},{ }^{18} \mathrm{~F},} \\ & 17-19,23-26 \mathrm{Ne}, \\ & { }^{33-35, ~ 44,46} \mathrm{Ar},{ }^{74-77} \mathrm{Kr} \end{aligned}$	2-25 MeV/u cyclotron
REX ISOLDE (CERN) 2001	1.4 GeV protons	3 kW	${ }^{8,9,11} \mathrm{Li},{ }^{10-12} \mathrm{Be},{ }^{10} \mathrm{C},{ }^{17} \mathrm{~F}$, ${ }^{24-29} \mathrm{Na},{ }^{28-32} \mathrm{Mg},{ }^{61,62} \mathrm{Mn},{ }^{61} \mathrm{Fe},{ }^{68} \mathrm{Ni}$, ${ }^{67-71,73} \mathrm{Cu},{ }^{74,76,78,80} \mathrm{Zn},{ }^{70} \mathrm{Se},{ }^{88,92} \mathrm{Kr},{ }^{96} \mathrm{Sr}$, ${ }^{108} \mathrm{In},{ }^{106,108,110} \mathrm{Sn},{ }^{122,124,126} \mathrm{Cd}$, ${ }^{138,140,142,144} \mathrm{Xe},{ }^{140,142,148} \mathrm{Ba},{ }^{148} \mathrm{Pm},{ }^{153} \mathrm{Sm}$, ${ }^{156} \mathrm{Eu},{ }^{182,184,186,188} \mathrm{Hg},{ }^{202,204} \mathrm{Rn}$	0.3-3 MeV/u linac

Atomic EDM moment

Static Electric Dipole Moment implies CP-violation
Schiff Theorem: neutral atomic system of point particles in electric field readjusts itself to give zero E field at all charges.
BUT: finite size of nucleus can break the symmetry
$\left|\mathrm{d}\left({ }^{199} \mathrm{Hg}\right)\right|<3.1 \times 10^{-29} \mathrm{e} \mathrm{cm}$ (Griffith et al PRL 102 (2009) 101601) In many cases provides best test extensions of the Standard Model that violate CP symmetry.

Nuclear pear-shapes can also enhance the "Schiff moment" by ~ 3 orders of magnitude
Search candidates are odd-A Rn [TRIUMF] and Ra [ANL, ISOLDE]

Octupole enhanced atomic EDM moment

Octupole Collectivity

$$
2^{\lambda} \begin{aligned}
& \lambda=2 \ldots \text { Quadrupole } \\
& \lambda=3 \text {...Octupole }
\end{aligned}
$$

Octupole correlations enhanced at magic numbers: 34, 56, 88, || 34

Exotic regions of the Segré chart, so far inaccessible.

Radioactive Ion Beams are the key

Octupole Collectivity

Microscopically...

Intruder orbitals of opposite parity and $\Delta \mathrm{J}, \Delta \mathrm{L}=3$ close to the Fermi level

${ }^{220} \mathrm{Rn}$ and ${ }^{224} \mathrm{Ra}$ lie near $Z=88, N=134$
$\pi\left(f_{7 / 2} \rightarrow i_{13 / 2}\right) \quad \nu\left(g_{9 / 2} \rightarrow j_{15 / 2}\right)$

Octupole Collectivity

Macroscopically...

Nuclei take on a "pear" shape
Reflection asymmetric

- β_{3}-vibration
- Static β_{3}-deformation
- Rigid β_{3}-deformation...

Signatures...

Odd-even staggering, negative parity
Parity doublets in odd-A nuclei
Enhanced EI transitions
Large E3 strength $\rightarrow B\left(E 3 ; 3^{-} \rightarrow 0^{+}\right)=<0^{+}\|E 3\| 3^{-}>^{2}$

Octupole Collectivity

Measured $B(E 3)$ values as a function of Z

Radon-220 and Radium-224

${ }^{224} \mathrm{Ra}$
[ref] J.F.C. Cocks et al. Phys. Rev. Lett. 78 (1997) and Nucl. Phys. A 645 (1999)

Coulomb Excitation

MINIBALL @ REX-ISOLDE

MINIBALL

- Particle ID in a DoubleSided Si Strip Detector.
- Event by event Doppler correction.
- $17^{\circ}<\theta_{\text {lab }}<54^{\circ}$
- Array of HPGe of 8 triple clusters
- 6-fold segmentation for positioning
- $\varepsilon>7 \%$ for $1.3 \mathrm{MeV} \gamma$-rays

Particle-gamma coincidences

Analysis - ${ }^{224} \mathrm{Ra}: \mathrm{Ni} / \mathrm{Sn}$

Analysis - ${ }^{220} \mathrm{Rn}: \mathrm{Ni} / \mathrm{Sn}$

Analysis - ${ }^{220}$ Rn: High/Low θ

Analysis - ${ }^{224} \mathrm{Ra}$ GOSIA

16 free matrix elements +6 normalisation factors

"Experiment"	Number and type of data
Multi-nucleon transfer ${ }^{[1,2]}$ ${ }^{226} \mathrm{Ra}\left({ }^{58} \mathrm{Ni},{ }^{60} \mathrm{Ni}\right.$) ${ }^{224} \mathrm{Ra}$ ${ }^{232} \mathrm{Th}\left({ }^{136} \mathrm{Xe},{ }^{128} \mathrm{Te}\right)^{224} \mathrm{Ra}$ Alpha, alpha-prime ${ }^{[3]}$ ${ }^{226 R a(a, a \prime 2 n)}{ }^{224} R a$ Alpha(beta)-decay ${ }^{[4]}$ ${ }^{228} \mathrm{Th}\left({ }^{224 \mathrm{Fr}) \rightarrow \alpha(\beta)}\right.$	Branching ratios (1-, 3-, 5-, $\left.\mathbf{7}^{-}, 2^{+} \mathrm{\gamma}\right)$
Delayed-coincidence ${ }^{[5,6]}$	Lifetimes (2^{+}, 4^{+}) -- 2
Cd/Sn high CoM range $23.9^{\circ}<\theta_{\mathrm{lab}}<40.3^{\circ}$	Y-ray yield $\quad--8+7$
Ni high CoM range $23.1^{\circ}<\theta_{\mathrm{lab}}<39.9^{\circ}$	Y-ray yield -10
Cd/Sn low CoM range $40.3^{\circ}<\theta_{\mathrm{lab}}<54.3^{\circ}$	Y-ray yield $\quad--8+8$
Ni low CoM range $39.3^{\circ}<\theta_{\mathrm{lab}}<53.2^{\circ}$	Y-ray yield
Total	55 data points

Results - ${ }^{224} \mathrm{Ra}$

- Consistent with rotational model
- Unstretched E3 matrix elements are nonzero. Rot-vib model predicts these vanish
- Coupled with level energy data, we observe a static octupole deformation in ${ }^{224} \mathrm{Ra}$

Analysis - ${ }^{220}$ Rn GOSIA

15 free matrix elements +6 normalisation factors

"Experiment"	Number and type of data
Multi-nucleon transfer ${ }^{[1,2]}$ ${ }^{226} \mathrm{Ra}\left({ }^{58} \mathrm{Ni},{ }^{60} \mathrm{Ni}\right.$) ${ }^{224} \mathrm{Ra}$ ${ }^{232} \mathrm{Th}\left({ }^{136} \mathrm{Xe},{ }^{128} \mathrm{Te}\right)^{224} \mathrm{Ra}$ Alpha, alpha-prime ${ }^{[3]}$ ${ }^{226} \operatorname{Ra}\left(\mathrm{a}, \mathrm{a}\right.$ '2n) ${ }^{224} \mathrm{Ra}$ Alpha(beta)-decay ${ }^{[4]}$ ${ }^{228} \mathrm{Th}\left({ }^{224} \mathrm{Fr}\right) \rightarrow \mathrm{a}(\beta)$	$\begin{array}{rr}\left.\text { Branching ratios (} 1^{\prime}, 5^{-}, 7^{-}\right) & \\ & --3\end{array}$
Delayed-coincidence ${ }^{[5,6]}$	Lifetimes (2+) -- 1
Cd/Sn/Ni high CoM range $22.1^{\circ}<\theta_{\mathrm{lab}}<37.8^{\circ}$	Y-ray yield $-2+8+5$
Cd/Sn/Ni low CoM range $37.9^{\circ}<\theta_{\mathrm{lab}}<51.8^{\circ}$	Y-ray yield $-2+8+5$
Total	34 data points

Results - 220Rn

- Consistent with rotational model.
- No information on unstretched E3.
- Larger data set required to determine if $<1-||E 3|| 2^{+}>$or $<1-||E 3|| 4^{+}>$vanish.
- Not definitive determination of collective mode, dynamic (vibrational) or static (rotational) from Q_{3} alone.
- δE and Δi_{x} implies a coupling of an octupole phonon to the even-spin rotational band.
- Magnitude of Q_{3} consistent with dynamic picture, similar to $Q_{3}\left({ }^{(208} \mathrm{Pb}\right)$ and $Q_{3}\left({ }^{232} \mathrm{Th}\right)$
- Dynamic collectivity in ${ }^{220} \mathrm{Rn}$

${ }^{220} \mathrm{Rn}$ - Vibrational?

L.P. Gaffney et al., Nature 497, 199 (2013)

Discussion and Interpretation

Discussion and Interpretation

HIE-ISOLDE

European Roadmap for RIB facilities

Isolde

2019

2015
2011
2007

P. Butler

Multi-MW driver $150 \mathrm{MeV} / \mathrm{u}$ postacc
low energy intense RIB precision measurements Astro, "Fundamental",

Solid-State physics
Life-sciences
high energy RIB v short lived nuclei impulse reactions
Atomic, Plasma physics Hadron, EoS physics

The Facility for Antiprotons and Ion Research

Primary Beams

$\cdot \mathbf{3 . 5} \cdot \mathbf{1 0}^{11}{ }^{238} \mathrm{U}^{28+} / \mathrm{s}(\mathrm{DC})$
@ $1.5 \mathrm{GeV} / \mathrm{u}$

- 5•10 ${ }^{11}{ }^{238} \mathrm{U}^{28+}$ (pulsed)
@ $1 \mathrm{GeV} / \mathrm{u}$
- factor 100-1000 in intensity over present

Secondary Beams

- Broad range of radioactive beams up to $\mathbf{1 . 5} \mathbf{~ G e V} / \mathbf{u}$
- up to factor 10000 in intensity over present

The SPIRAL2 Project

EURISOL

Energy Upgrade:

The HIE-ISOLDE project construction of the SC LINAC to upgrade the energy of the post-accelerated radioactive ion beams to $5.5 \mathrm{MeV} / \mathrm{u}$ in 2015 and $10 \mathrm{MeV} / \mathrm{u}$ by 2017

Intensity Upgrade:
The design study for the intensity upgrade, also part of HIE-ISOLDE, started in 2011, and addresses the technical feasibility and cost estimate for operating the facility at 10 kW once LINAC4 and PS Booster are online.

Increase in REX energy from 3 to $10 \mathrm{MeV} / \mathrm{u}$ (first step in increase to $5.5 \mathrm{MeV} / \mathrm{u}$) ~ 2013

Increase proton intensity $2 \rightarrow 10 \mathrm{~kW}$ (LINAC4, PS Booster upgrade) - primary target upgrade ~ 2014

Replace PS Booster by (Low Power) SPL IO $\rightarrow 70 \mathrm{~kW} \sim 2016$ SPL-ISOLDE \rightarrow EURISOL

HIE-ISOLDE construction

Transfer reactions

The University of Vork

Inverse kinematics - wide applications

- Precision studies of nuclei in regions where no targets exist

Normal kinematics

Inverse kinematics

Stable isotopes

The University of york

The heavy ion storage ring TSR MPIK Heidelberg

TSR properties

TSR installation

OTSR installation above a cable duct
-Tilted beam line coming up
from the machine

TSR applications

M. Grieser et al. Eur. Phys. J. Special Topics 207, 1-117 (2012)

In-Ring - high luminosity achieved thru multiple beam passes ($\sim 1 \mathrm{MHz}$), important for reaction experiments, and laser measurements of static properties of exotic nuclei.

Cooled beams in HELIOS-type spectrometer:

20-30 keV resolution for (d, p)
50-70 keV resolution for (C, C')
direct scatter detection possible

Principle of operation

Measured quantities

Flight time:	$\mathrm{T}_{\text {flight }}=\mathrm{T}_{\text {cyc }}$
Position:	z^{\prime}
Energy:	$\mathrm{E}_{\text {lab }}$
Derived quantities	
Part. ID:	m / q
Energy:	E_{cm}
Angle:	θ_{cm}

$\mathrm{B}=\mathbf{2 T}$	
Particle	$\mathrm{T}_{\text {cyc }}$ (ns)
\mathbf{p}	34.2
${ }^{3} \mathrm{He}^{2+}$	51.4
\mathbf{d}, α	68.5
\mathbf{t}	102.7

The University ofloork

The field - uniformity is key

Medical imaging (MRI): 1-5 parts in $10^{7}(<\mu T)$
Nuclear physics: 1 part in $10^{3}(\mathrm{mT})$

The University of Vork

The HELIOS approach, backward hemisphere

Negative-Q-value reaction, target at $\Delta z=0 \mathrm{~m}$

- There is no kinematic compression for a fixed distance Δz. The excitation energy in the lab. and c.m. are related by only an additive constant
- The kinematic shift in Δz is linear and modest $[<15 \mathrm{keV} / \mathrm{mm}$ for (d, p) at $2 \mathrm{~T}, \Delta z$ resolution in HELIOS <1 mm]
- PID through cyclotron period, energy independent, readily identify ions with energies as low as ~200 keV

$$
E_{\mathrm{cm}}=E_{\mathrm{lab}}+\frac{m}{2} \overline{V_{\mathrm{cm}}^{2}}-\frac{m \overline{V_{\mathrm{cm}}} \sqrt[z]{ }}{T_{\mathrm{cyc}}}
$$

The University of york

HELIOS vs. Si-detector arrays

Tiara, T-REX, Sharc, ORRUBA

The University of york

