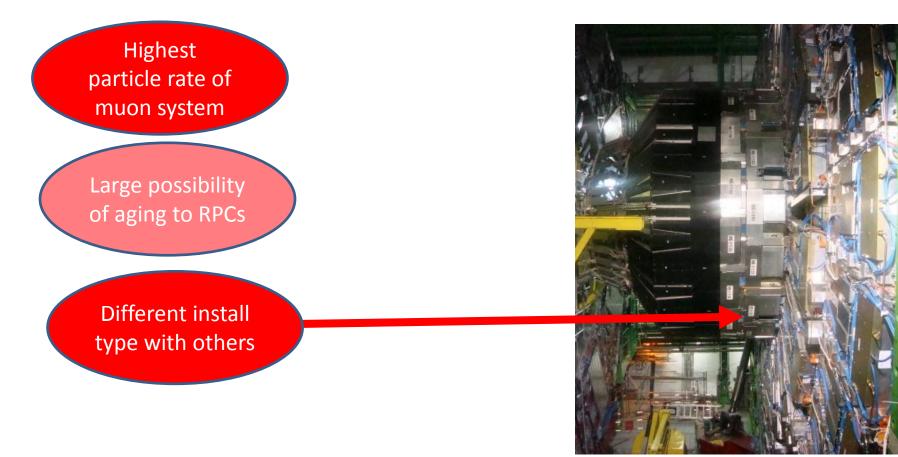

1. Introduction

2. Design of the RE1/1 RPCs

- 3. Link system
- 4. Services


CMS Forward RPC

Numbers of RPCs for the high η region

Region	# of RPCs for both sides	# of η div.
RE1/1	36 x 2= 72	4
RE2/1	$18 \ge 2 = 36$	4
RE3/1	$18 \ge 2 = 36$	3
Total	144	

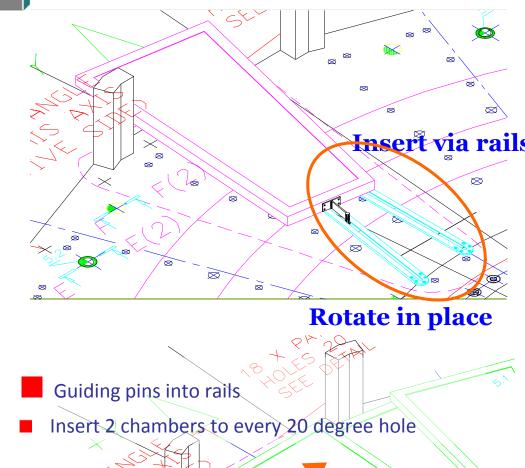
RE1/1 : a "special" region of the CMS detector

The installation of the Forward RPCs at YE1-1 (RE1/1) in 1.6 < eta < 2.1 effectively enhances the trigger efficiency : in virtue of high magnetic field at the YE1-1 region, the strong bending force is expected to enhance the trigger performance of the CMS muon system despite of a large background.

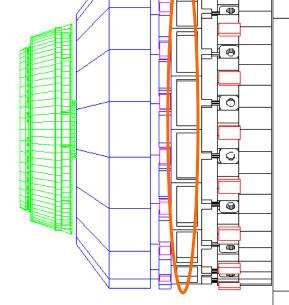
backgrounds as much as 1.0 kHz/cm^2

✤In the initial design in the RE1/1 region 2 bakelite gap RPCs were the detectors to be placed closest to the beam bunch-crossing position.

✤6 RE1/1 Bakelite-RPC modules were constructed in KOREA, and were tested & qualified under the responsibility of our KOREAN colleagues for the quality certification


✤4 of them have been installed them at the YE1-1 region of CMS for testing with beam collisions

2. Design of the RE1/1 RPCs

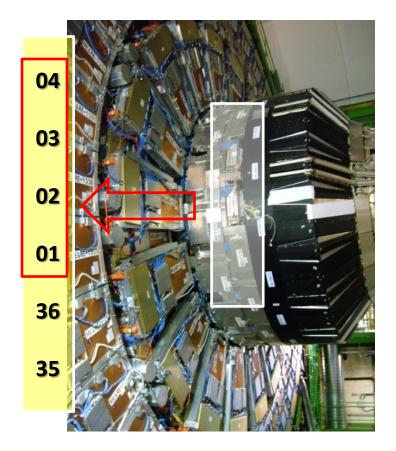

72 RE1/1 RPCs at YE1 :

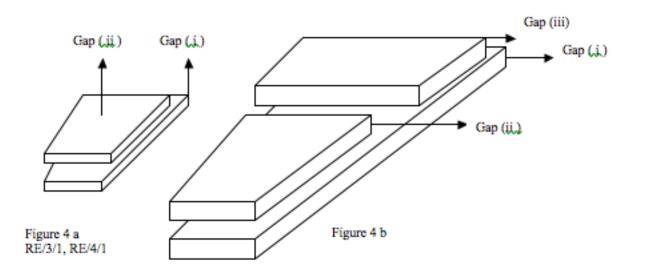
- Advantage of RE1/1 : RPCs closest to *pp* collision vertex with presence of strong magnetic fields.
- High beam backgrounds

Gammas, neutrons, charged pions ... Systematic radiation hardness study has been strongly required.

Insert in End-cap nose

A LOT OF CONSTRAINTS


Limited space for installation Insert the chambers into nose Narrow space for installation Only one direction access Affected by other detector Same space with ME1/1(CSC) Link board space with HCAL Overlapping chambers Guiding pins into rails Insert 2 chambers to every 20 degree hole installation after assembly of other detector Near to the CSC ME1/1, a lot of cables, fibers, 3-D model design of RE1/1 Design is done and verified with : −a mockup chamber was installed at YE-1 at 2007 -four real chambers inserted in 2009-2010


- Total thickness of allowed installation for RE1/1 RPC is around 95mm.
- The 3-D model design for RE1/1 and integration for gas, cooling, cabling...

6 chambers (RE+1/1 35~36~01~04) were planned to install, but 4 chambers(RE+1/1 : $01\rightarrow 04$) were installed.

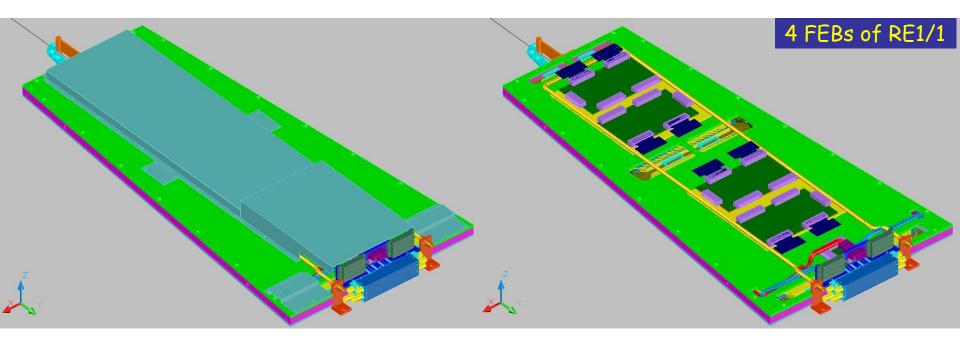
2 chambers with bad gaps haven't been qualified and they are at cern

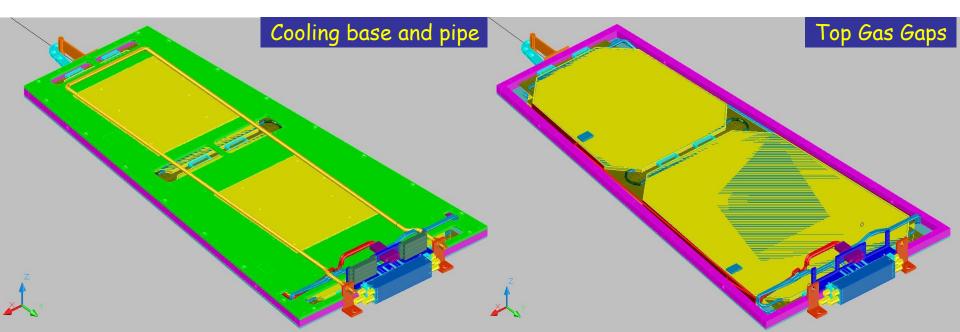
	RE											
	1/1	1/2	1/3	2/1	2/2	2/3	3/1	3/2	3/3	4/1	4/2	4/3
No. of chambers (Flus & Minus Z)	36*2	36*2	36*2	18*2	36*2	36*2	18*2	36*2	36*2	18*2	36*2	36*2
η Segments	4	3	3	4	3	3	2	3	3	2	3	3
φ Coverage, deg.	10	10	10	20	10	10	20	10	10	20	10	10
Strips/n Segment	32	32	32	64	32	32	64	32	32	64	32	32
No. of channels/chamber	128	96	96	256	96	96	128	96	96	128	96	96

CMS document

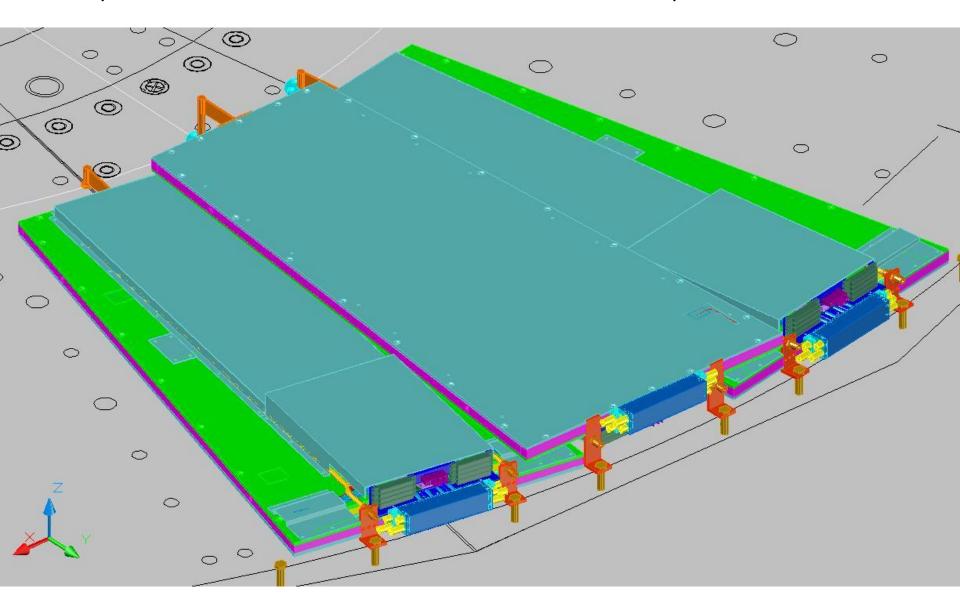
C <u>Table: V</u> Active Area									
Station	Gap	Ri	Ro	ACTIVE A	B	С	D	Active	
20000					_		_	Area M ²	
	RE1/1(i)	1400	2359	963	413	245	959	0.315	
RE1/1	RE1/1(ii)	1415	1772	358	310	248	357	0.099	
	RE1/1(iii)	1842	2344	504	410	322	502	0.184	
RE1/2	RE1/2(i)	2795	4599	1811	805	489	1804	1.170	
	RE1/2(ii)	2807	4031	1229	705	491	1224	0.733	
	RE1/2(iii)	4091	4587	498	803	716	496	0.378	
RE1/3	RE1/3(i)	5110	6775	1671	1186	894	1665	1.736	
	RE1/3(ii)	5125	6362	1242	1113	897	1237	1.245	
	RE1/3(iii)	6422	6760	339	1183	1124	338	0.392	
RE2/1	RE2/1(i)	1997	3204	1226	1130	704	1207	1.107	
	RE2/1(ii)	2012	2500	495	881	710	488	0.388	
	RE2/1(iii)	2570	3189	629	1125	906	620	0.629	
RE2/2	RE2/2(i)	3336	4949	1619	866	584	1613	1.169	
	RE2/2(ii)	3351	4311	964	754	586	960	0.644	
	RE2/2(iii)	4371	4934	565	863	765	563	0.458	
RE2/3	RE2/3(i)	5038	6918	1887	1211	882	1880	1.966	
	RE2/3(ii)	5053	6367	1319	1114	884	1314	1.313	
	RE2/3(iii)	6453	6903	478	1208	1125	476	0.555	
RE3/1	RE3/1(i)	2472	3204	744	1130	872	732	0.733	
	RE3/1(ii)	2487	3189	713	1125	877	702	0.703	
RE3/2	RE3/2(i)	3336	4949	1619	868	584	1613	1.169	
	RE3/2(ii)	3351	4311	964	754	586	960	0.644	
	RE3/2(iii)	4371	4934	565	863	765	563	0.458	
RE3/3	RE3/3(i)	5038	6918	1887	1211	882	1880	1.966	
	RE3/3(ii)	5053	6367	1319	1114	884	1314	1.313	
	RE3/3(iii)	6427	6903	478	1208	1125	476	0.555	
RE4/1	RE4/1(i)	2692	3204	520	1130	949	512	0.533	
	RE4/1(ii)	2707	3189	490	1125	955	482	0.502	
RE4/2	RE4/2(i)						1613	1.169	
	RE4/2(ii)						960	0.644	
	RE4/2(iii)		в				563	0.458	
RE4/3	RE4/3(i)						1880	1.966	
	RE4/3(ii)		1			_	1314	1.313	
	RE4/3(iii)		1	/	T	Ť	476	0.555	
		Ì)			R _o			

__/___


с


CMS document

Tables

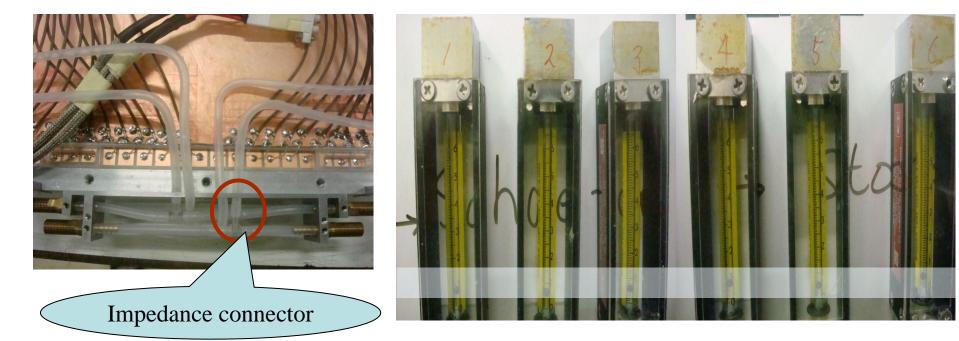

R_i

Finally designed RE1/1 RPCs : 10 degree trapezoidal, 36 RPC modules on each wing

Overlap of RE1/1 Chambers : total 86 mm thick for two layers

10 sets of RE1/1 gas gaps constructed at KODEL (Dec. 2007).

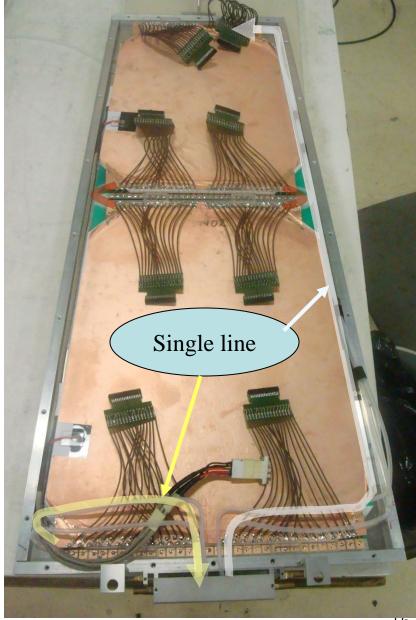
(million)

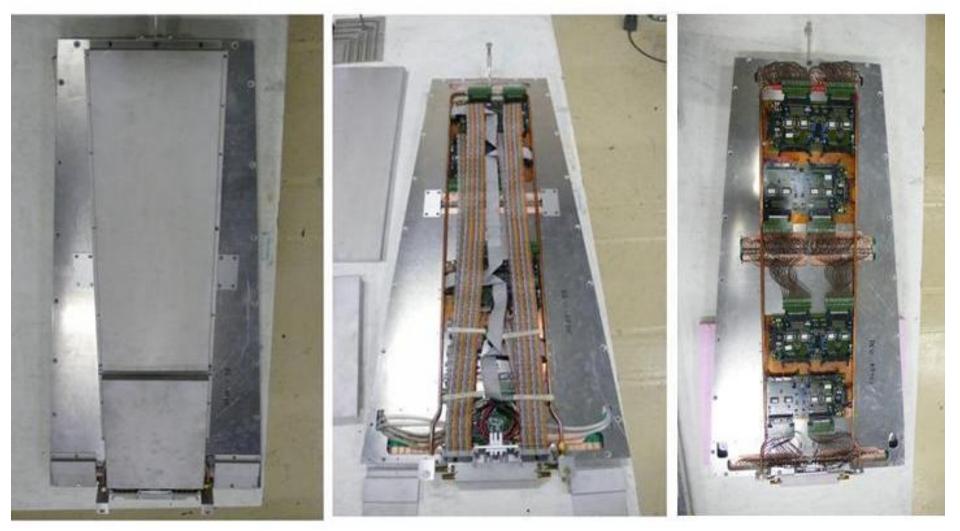

Trend I

TTEO BIRCHARD

4 sectors of 32 strips covering 4 η's (from 1.5 to 2.1), produced by an etching method

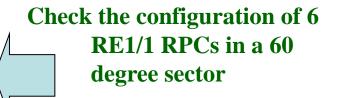
Parallel gas connection


- RE1/1 gas connection : parallel connection (1 sector made of 6 chambers)
- Impedance mismatching \rightarrow possibility of non-supply to the chamber
- For matching impedance \rightarrow using impedance "T" connectors
- Parallel connection test (roughly)
 - Using 6 impedance connector and pipes (model of the 1 sector)
 - The difference between each line is not much & flow is not zero
 - \rightarrow Impedance is matched, so parallel connection no problem
 - Roughly result : The flow rate at each line is none zero.


Simple gas connection line

- From gap to T shape connector
 Single line
 Decreasing possibility of the gas leakage from connectors
- In the gas box : so much complicated

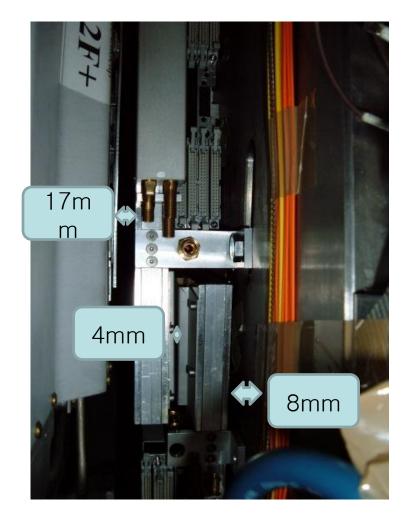
Assembled RE1/1 Chambers at ISR



Covered by FEB shielding box

FEB flat cable layout

Signal cable layout



* Overlapped RE1/1 RPCs to check any interference among the cables, gas lines, and cooling lines

Mechanics : Clearance is OK

Difference between RE1/1 and other RE chambers

- More compact (thinner + smaller)

- Thinner co-axial cable
- Gluing thinner copper sheet with spray

- More complicated

- Soldering method
- Inside structure of the gas distribution box

- More particle rate

- More FEBs : 3 boards (96 channels) \rightarrow 4 boards (128 channels)
- Change the gas connection method

- serial connection \rightarrow parallel connection with impedance "T" connector

RPC DAQ system in the RPC PAC muon trigger

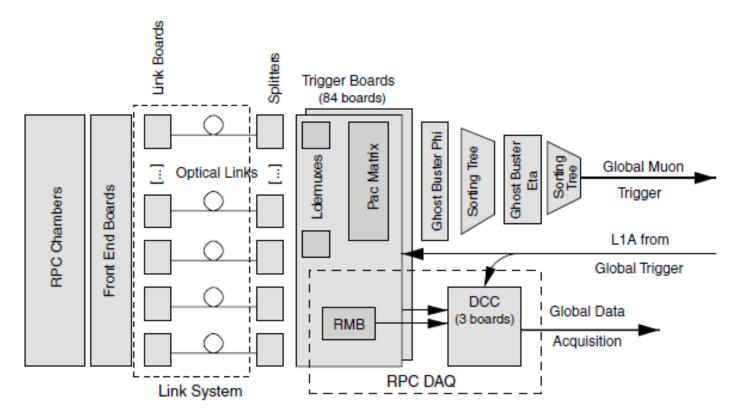
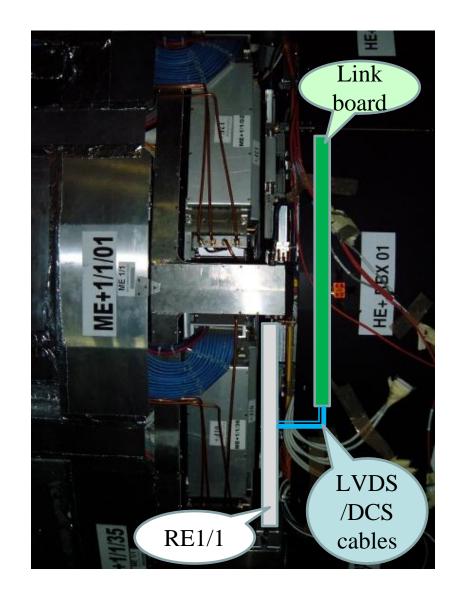



Figure 1. Location of the RPC DAQ system in the RPC PAC muon trigger electronics [2].

Signal & DCS cables

RE1/1 link board crate

Installed in the CMS end caps Liquid cooling Need different layout for boards No design exist Prototypes 2007

Service systems

ALL services have been installed but

HV

6 channels have been tested / 4 channels are good

LV

6 channels tested are good

Gas

All the 6 channels are ready, need to check

Cooling

Already connect to HCAL, need to modify connection Sensors

2 temperature sensors/chamber Humidity and B-filed sensors are needed

- Another plan
 OPEN CMS
 - Directly
 connected to a LB
 rack in the
 balcony

