Nuclear Data Development Related to the Th-U Fuel Cycle in China

WU Haicheng

China Nuclear Data Center(CNDC)
China Institute of Atomic Energy(CIAE)
P.O.Box 275-41,Beijing 102413, P.R.China
E-Mail: haicheng@ciae.ac.cn

OUTLINE

- 1. Introduction
- 2. Measurement of nFP Yields for ²³²Th
- 3. Systematics Study on thermal XS
- 4. Nucl. Data Evaluation Related to Th-U Fuel Cycle
 - decay data and structure data
 - neutron induced fission product yields
 - complete set of nuclear reaction data
- 5. Nuclear Data Validation for ²³³U and ²³²Th
- 6. Brief introduction of CENDL-TMSR
- 7. Summary

1. Introduction

- ✓ In recent year, the Th-U fuel cycle, which is regarded as a supplement of the U-Pu fuel cycle, draws the nuclear community's attention.
- ✓ The top priority requirement of improving the nuclear data used in neutronics studies of thorium reactor.
 - The general propose nuclear reaction data for Th, Pa and U;
 - Decay data of the mass chain A=232,233 and 234;
 - Neutron induced fission product yields for ²³²Th and ²³³U, et al.
- ✓ To meet the requirement, quite limit research activities have been carried on in CIAE since 2010, including:
 - ☐ Measurement of fission product yields induced by 14MeV n + ²³²Th;
 - Study systematics of the thermal cross sections of actinides;
 - Evaluation and validation nuclear data for ²³³U, ²³²Th and et al.

- 12 key nuclides (Colored in the Figure)
 - ☐ Decay data, fission yields and general purpose reaction data.

2. Measurement of nFP Yields for ²³²Th

efficiency

- Fission Product Yields of ²³²Th induced by 14MeV neutrons were measured by direct gamma spectrum method.
 - Sample: 1 gram, 100% 232 Th, with Φ =22mm, covered by Al foils;
 - Neutron source: 14 MeV DT source with neutron flux nearly 10¹⁰ /cm²/s on the sample;

• Fission product activities were measured by HPGe γ -ray

spectrometry.

- The efficiency curve from 59.5keV up to 5MeV was obtained by combination of measurement and M-C simulation.

Nearly 70% of the Yields were directly measured.

- Unmeasured product fields were interpolated or extrapolated.
- All mass fields were normalized by 200%.
- When $80 \le A \le 100$ and $130 \le A \le 150$, the relative uncertainties are less than 5% for most of the products measured.
- Discrepancies > 20% were found when compared with evaluations.

The accuracy of the evaluated data may be not as good as we expected.

Chain Yield (%)

3. Systematics study on thermal XS

- It is difficult to evaluate thermal XS for some Th and Pa isotopes
 - Short of theoretical method.
 - Evaluation is mainly based on experimental data.
 - Short of good experimental data for Th and Pa.
- Systematics of the cross sections at thermal energy are necessary.
 - No good systematics of thermal fission and capture XS for fission nuclides is available.

3.1 Systematics study on thermal fission XS

An experiential formula was assumed from Bohr-Wheeler formula.

$$\ln \sigma_f = b \ln(B_N - \Delta - V_f + c) + a$$

- Thermal fission cross sections and uncertainties for 70 actinides were recommended.
 - from 227 Th to 254 Cf;
 - CENDL-3.1 ENDF/B-VII.0 JENDL-4.0 and "Atlas of Neutron Resonances" (fifth edtion, BNL-325).
- A set of single-peak fission barriers was also recommended.
 - RIPL-3, CENDL-3.1 and JENDL-4.0.

When set parameter c = 3, the (n,f) XSs can be illustrated by the formula quite well.

Both odd-even effects of proton and shell effect in the neutron dependence are observed.

Even Z

Odd Z

- parameter a and b for each Z can be obtained by L-S fitting.
- When charge number is
 - Odd: a/b can be illustrated by linear function of Z;
 - Even: a/b can be illustrated by quadratic parabola function of Z.
- Then, a and b for each Z can be calculated in a general way.
- Final formula

$$\ln \sigma_f = b(Z) \times \ln(B_N - \Delta - V_f + 3) + a(Z)$$

 Thermal (n,f) XS becomes predictable by systematics.

3.2 Systematics study on thermal capture XS

- No systematics of thermal capture XS for actinides
 - The Kopecky formula is established for 30keV.

Thermal capture cross sections plotted against aU.

Blue points: evaluations

Red and green curves: systematics calculations

- Try to decrease the divergence of the data but no significant improvement was observed.
 - Update experimental database used in evaluation;
 - Update level density parameters of actinides in systematics formula;

$$\chi^2 = 153726$$
 Kopecky

$$\chi^2 = 48791$$
 This work

 There is still no effective systematics to calculate thermal capture XS.

4. Nuclear Data Evaluation Related to Th-U fuel cycle4.1 Nuclear Decay Data and Structure Data

 Nuclear decay data and structure data in mass chain A=232 and A=234 related to Th-U fuel cycle have been reevaluated.

 No significant change of half-lives, except uncertainties and decay scheme.

4.2 Evaluation of nFY for ²³²Th

- Accumulated fission yields and mass distribution were evaluated though comparison of the evaluations from ENDF/B-VII.0, JEFF-3.1.1 and JENDL-3.3.
 - evaluation mainly focused on the yields that interested in burnup credit calculation.
 - ⁹⁵Mo, ⁹⁹Tc, ¹⁰¹Ru, ¹⁰³Rh, ¹⁰⁹Ag, ¹³³Cs, ¹⁴⁷Sm, ¹⁴⁹Sm, ¹⁵⁰Sm, ¹⁵¹Sm, ¹⁵²Sm, ¹⁴³Nd, ¹⁴⁵Nd and ¹⁵³Eu.
 - For ¹³³Cs, JEFF is recommend; For ¹⁵²Sm, ENDF/B-VII.

 The final evaluation is a combination of B-VII and JEFF, with the yields of ¹⁵²Sm and ¹⁵³Eu as well as the yields on the same chains adjusted.

Mass Distribution

4.3 Nuclear Reaction Data Evaluation Related to Th-U (1) Re-evaluation of neutron reaction data for ²³³U

- According the feedbacks from benchmarking results, an updated evaluation for ²³³U has been recommend.
 - (n, el) and (n, inl) cross sections have been improved;
 - fission cross sections, resonance parameters and angular distributions of (n, el) have been revised.

Comparison of ²³³U(n,inl) cross sections

Comparison of C/E value for UMF system

(2) Re-evaluation of neutron reaction data for ²³²Th

- The C/E values for KBR experiment with epithermal and fast spectrum are seriously over predicted by CENDL-3.1.
- ²³²Th(n,γ) XS from 4keV to1MeV have been re-evaluated based on G. Aerts' work.

C/E of k-eff or k-inf

Comparison of ²³²Th(n,γ) cross section evaluation with CENDL-3.1、ENDF/B-VII.0 and experimental data

Comparison of C/E values for KBR and Thor

(3) Recommendation of ^{233,234}Th, ^{231,232,233}Pa and ^{232,234,236}U

- The nuclear reaction data evaluations for these isotopes have been done in ENDF/B-VII.0, JENDL-3.3, -4.0 and JEFF-3.1.1.
- Experimental data are quite limit for some nuclides.
- Better evaluation was selected by comparison among libraries.
 - Theoretical calculation is reasonable;
 - Have good agreement with experimental data if available.
- Recommendations are listed in following table.

Evaluation Library	Materials
ENDF/B-VII.0	231,233 Pa 、232,234,236 U
JENDL-4.0	227,228,229,230,231,233,234Th, 232Pa

Nuclear Data Validation for ²³³U and ²³²Th Validation of the evaluations before 2010

- 159 cases for ²³³U and 55 cases for ²³²Th were selected from ICSBEP2006 to test the evaluations in CENDL-3.1, ENDF/B-VII.0, JENDL-3.3 and -4.0.
 - These benchmarks contains the fast, intermediate and thermal spectra systems.
 - The criticality calculations were done by MCNP5.
 - And all ACE files used were generated by NJOY99 with the same processing parameters.
 - Thermal scattering data comes from sab2002.

C/E values of k_{eff} for UMF system

- Under prediction of k_{eff} for UMF system is caused by too low ²³³U(n, inl) XS and too high (n,el) XS;
- The resolved resonance parameters are poor, serious under estimation of k_{eff} depend on the spectrum index was observed in results of all libraries.

C/E values of k_{eff} for UST system

Comparison of C/E values for USI system

- 232 Th(n, γ)XS of CENDL-3.1 in 4keV \sim 1MeV region is too low;
- Resolved resonance XS of 232 Th(n, γ) may not large enough.

C/E values of k_{eff} for KBR and Thor

C/E values of k_{eff} for SB series

Sensitivities of k_{eff} to ²³²Th XS (KBR-19)

C/E values of k_{eff} for HCT021(15B)

5.2 Validation of the new CENDL evaluations

- The new evaluations for ²³²Th and ²³³U accomplished in this work were tested with the same benchmark set.
- For C32b2, only ²³²Th, ²³³U and ¹H were replaced with new evaluations.
- Improvements are obtained.

UCT system

Water reflected ²³³U nitrate solution system

6. Brief Introduction of CENDL-TMSR

 A hybrid library was recommended based on CENDL-3.1, -3.2beta、ENDF/B-VII.0、JENDL-4.0、JEFF-3.1.1 and IAEA/ADS-2.0

	Materials	No.
Light nuclides	^{1,2,3} H, ^{3,4} He, ^{6,7} Li, ⁹ Be, ^{10,11} B, ¹² C, ^{14,15} N, ^{16,17} O, ¹⁹ F	16
$(\mathbf{Z}=<10)$		
Structure Material	^{22,23} Na、 ^{24,25,26} Mg、 ²⁷ Al、 ^{28,29,30} Si、 ³¹ P、 ^{0,32,33,34,36} S、 ^{35,37} Cl、 ^{36,38,40} Ar、 ^{39,40,41} K、	86
(11 = < Z = < 83)	40,42,43,44,46,48Ca, 45Sc, 46,47,48,49,50Ti, 0V, 50,52,53,54Cr, 55Mn, 54,56,57,58Fe, 59Co, 58,60,61,62,64Ni,	
	0,63,65Cu, 0Zn, 175,176Lu, 174,176,177,178,179,180Hf, 181,182Ta, 180,182,183,184,186W, 185,187Re, 191,193Ir,	
	$^{197}\mathrm{Au}$, $^{196,198,199,200,201,202,204}\mathrm{Hg}$, $^{204,206,207,208}\mathrm{Pb}$, $^{209}\mathrm{Bi}$	
Fission Products	69,71Ga、70,72,73,74,76Ge、74,75,77,79As、74,76,77,78,79,80,82Se、79,81Br、78,80,82,83,84,85,86Kr、85,86,87Rb、	224
(31≤Z≤68)	84,86,87,88,89,90Sr, 89,90,91Y, 90,91,92,93,94,95,96Zr, 93,94,95Nb, 92,94,95,96,97,98,99,100Mo, 99Tc,	
	96,98,99,100,101,102,103,104,105,106 Ru , $103,105$ Rh , $102,104,105,106,107,108,110$ Pd , $107,109,110$ m, 111 Ag ,	
	$106,108,110,111,112,113,114,115 \text{m},116 \text{Cd}, 113,115 \text{In}, 112,113,114,115,116,117,118,119,120,122,123,124,125,126} \text{Sn},$	
	121,123,124,125,126 Sb, 120,122,123,124,125,126,127 m,128,129 m,130,132 Te, 127,129,130,131,135 I,	
	$123,124,126,128,129,130,131,132,133,134,135,136\mathbf{Xe}, 133,134,135,136,137\mathbf{Cs}, 130,132,133,134,135,136,137,138,140\mathbf{Ba},$	
	138,139,140La, $136,138,139,140,141,142,143,144$ Ce, $141,142,143$ Pr, $142,143,144,145,146,147,148,150$ Nd,	
	147,148,148m,149,151 Pm , $144,147,148,149,150,151,152,153,154$ Sm , $151,152,153,154,155,156,157$ Eu ,	
	$152,153,154,155,156,157,158,160 \text{Gd}, 159,160 \text{Tb}, 156,158,160,161,162,163,164} \text{Dy}, 165,166 \text{mHo}, 162,164,166,167,168,170} \text{Er}$	
Actinides		74
(Z≥84)		
(<u>-</u>)	240,241,242,242m,243,244,244m Am, 240,241,242,243,244,245,246,247,248,249,250 Cm, 249,250 Bk, 249,250,251,252,253,254 Cf, 249,250,251,252,252,252,252,252,252,252,252,252	
	^{253,254,255} Es、 ²⁵⁵ Fm	
Total		400

7. Summary

- To improve the nuclear data related to Th-U fuel cycle, some key data have been measured or re-evaluated:
 - nFYs for 14MeV n + ²³²Th were measured with uncertainties < 5% around two peak of the mass distribution.
 - Systematics formula of thermal (n,f) XS was obtained.
 - Nuclear decay data and structure data for A=232 and 234 were updated.
 - Fission product yields for n+ ²³²Th were recommended based on combination of ENDF/B-VII.0 and JEFF-3.1.1.
 - Nuclear reaction data for ²³²Th and ²³³U in CENDL were revised and improved based on the feedbacks from benchmark testing.

- The benchmarking results show the resonance parameters for ²³³U and ²³²Th still need to be improved.
- A hybrid general purpose library, CENDL-TMSR, which contains 400 nuclides is recommended.
- Research work need to be done
 - Improve nFY for ²³²Th and ²³³U;
 - Establish reliable theory or systematics for thermal capture;
 - Improve neutron reaction data, especially resonance parameters for ²³³U and ²³²Th;
 - Too many others can not be fully listed here.
- Are the current nuclear data libraries good enough to design a Th reactor, even get a license?

Thank you for your attention!

