

Aqueous and Pyrochemical reprocessing of thorium fuel

S. Delpech

IPN Orsay, Université Paris Sud, 91406 ORSAY *E-mail corresponding author: delpech@ipno.in2p3.fr

Thorium Energy Conference, ThEC 2013, Geneva, 27-31 Oct. 2013

Sylvie Delpech

THORIUM FUEL				
Liquid fuel (molten salt reactor) ThF₄	Solid fuel ThO₂			
Recovery of fissile material (²³³ U) for sustainable energy				
Separation FPs/MA to decrease waste toxicity				
Gaseous FP extraction Redox potential control Control of fertile/fissile ratio				
Pyrochemical treatment	Aqueous treatment			

	Extraction	Comments	State			
	process					
The sta	The state of the elements depends on the redox conditions of the fuel salt. The redox					
conditio	ons are given	by the ratio $U(IV)/U(III)$ which varies from 100 to 10. The	refore the			
redox p	otential of the	e salt is ranging between -3.0V and -3.3V.				
Es	RE1					
Cf	RE1					
Bk	RE1					
Cm	RE2		CmF₃			
Am	RE1		AmF_3			
Pu	RE1		PuF ₃			
Np	RE1		NpF ₃			
U	FLUO		UF ₄ /UF ₃			
Ра	STOP +		PaF ₄			
	FLUO					
Th	CORE		ThF ₄			
Ac	RE1		AcF ₃			
Ra	RE1		RaF ₂			
Bi	FLUO	Bi produced at metallic and liquid state. Can form BiF ₃ gas	Bi			
		under fluoration. Can also form BiNi alloys with structural				
		materials				
Pb	FLUO	Pb produced at metallic and liquid state.	Pb			
Er	RE2		ErF ₃			
Но	RE2		HoF ₃			
Dy	RE2		DyF ₃			
Tb	RE2		TbF ₃			
Gd	RE2		GdF ₃			
Eu	RE2		EuF3			

EXOL

Sylvie Delpech

Pyrochemical reprocessing : Results obtained in the frame of EVOL project

Sm	RE2	SmF ₂ can be also stable (depends on redox conditions)	SmF ₃
Pm	RE2	No data	PmF_3 ?
Nd	RE2		NdF ₃
Pr	RE2		PrF ₃
Се	RE2	Can also be oxidized to CeF ₄ gas by fluorination	CeF ₃
La	RE2		LaF ₃
Ва	CORE		BaF ₂
Cs	CORE		CsF
1	FLUO		1
Sb	FLUO	Sb produced at metallic and liquid state. Can form SbF ₅ gas by fluorination. Formation of NiSb alloys possible.	Sb
Sn	FLUO	Sn produced at metallic and liquid state. Can form $SnF_4(g)$ gas by fluorination at 800°C. Formation of Ni_3Sn , Ni_3Sn_2 and Ni_3Sn_4 alloys possible.	Sn
In		E=-3,36: RE seems possible but activity coefficients of In in Bi required to conclude	InF ₃
Cd	He	E=-2.87V. Cd is produced at metallic and liquid or gaseaous state (T _{vap} =765°C). So extraction by He bubbling.	Cd
Zr	He	E=-4.2V. ZrF_4 is gaseous at 912°C. Can be extracted with He and $F_2(g)$	ZrF ₄
Y	RE2	E=-5,13	YF ₃
Sr		E=-5,45	SrF ₂
Rb		E=-4,77	RbF
Br	FLUO		Br(-)
Ge	He	Ge produced at metallic state. Can produce GeF ₂ gas by fluorination. Ni ₂ Ge alloys possible	Ge
Ga	FLUO	Ga produced at metallic and liquid state. All Ga fluoride are gaseous. No data about Ni-Ga alloys	Ga

Sylvie Delpech

Cu	Не	CuF_2 after oxydation by $F_2(g)$. $CuF_2 \log K=-2,5$ at 800°C for $CuF_2(g)$. RE possible	Cu
Ni	He	NiF ₂ by fluorination. Not gaseous. RE possible	Ni
Со	He	E = -2.83V. CoF ₃ by fluorination. Gas at 900°C. RE possible	Со
Fe	He	E=-3.07V. Extraction possible by He bubbling depending	Fe/FeF ₂
		on redox conditions. RE seems possible depending on	
		activity coefficients of Fe in Bi and solubilities in Bi.	
Mn		Formation of MnF ₃ under fluorination but MnF ₃ is not a	Mn et
		gas. Reduction of MnF ₂ to Mn in Bi pool possible by RE1	MnF ₂
		and RE2. Efficiency calculation required activity	
		coefficients of Mn in Bi	
Cr		idem Mn	
V			
Ti			
Sc	RE1 ?	E = -4,86. RE possible. Requirement of activity coefficients	ScF ₃
		in liquid Bi.	
Са	CORE		CaF ₂
К	CORE		KF
Cl	FLUO		CI(⁻)
S	FLUO	Li ₂ S for E< -3,43V. All the fluoride sulfurs are gaseous.	S et S(⁻²)
		Formation of SF ₆ (g) by fluorination.	
F	CORE		F(⁻)
0	FLUO	O ₂ (g) by fluorination	O(²⁻)
В	He	$BF_3(g)$ in the redox conditions of the salt	BF ₃ (g)
Ве	CORE		BeF ₂
Li	CORE		LiF

- Proposition of a complete reprocessing scheme
- Identification for each element of an appropriate extraction method
- Identification of missing data
 - Experimental determination requirement
 - \rightarrow Efficiency determination
- Development of experimental device to test all reprocessing steps

- THOREX Process

- Dissolution in nitric acid/HF/Al(NO₃)₃
- Liquid-liquid (Co) Extraction Th/U by TBP 30%
- Selective back-extraction of Th and U

- Interim 23 Process (retained by India)

- Dissolution with nitric acid
- Selective liquid-liquid extraction of U by TBP 5% (Thorium in the wastes)

Dissolution

- Dissolution time in boiling conditions > 30-40h
- Solution very corrosive
 - Use of special steels
 - Addition of Al
- Partial dissolution of oxide (residues = blue thorine)
- Partial dissolution of zircaloy clad
 - Impact ?

Liquid-liquid extraction

- Formation of 3rd phase (low solubility of Th-TBP in organic solvent)
- Formation of slag (Th-DBP complexes very stable in organic phase) (DBP produced by TBP radiolysis and hydrolysis)

Dissolution

- Combine physical and chemical techniques (sonochemistry, electrochemistry)
- Impact of fuel fabrication techniques and microstructure
 - Addition of elements during the fabrication (MgO)

Extraction

- Study of alternative extractive molecules (monoamide ?)

Alternative

- Pyrochemical treatment for solid oxide fuel ?

Valorize the knowledge on thorium chemistry in molten salt at high temperature.

Conclusion and perspectives

Thanks to CNRS (PACEN-NEEDS) - EURATOM RHODIA (SOLVAY) and AREVA for their financial support

Thanks for your attention....

Sylvie Delpech