

MYRRHA Accelerator eXperiment research & development programme

Euratom MAX project

The MYRRHA Accelerator eXperiment R&D programme

Frédéric BOULY CNRS-IN2P3 / LPSC Grenoble, France

Jean-Luc BIARROTTE CNRS-IN2P3 / IPN Orsay, France EURATOM FP7 MAX project coordinator

MYRRHA Accelerator eXperiment research & development programme

1.Introduction

- 2. The MYRRHA accelerator concept
- Some MAX recent achievments
- 4. Perspectives

MYRRHA Project

Multi-purpose hYbrid Research Reactor for High-tech Applications At Mol (Belgium)

Development, construction & commissioning of a new large fast neutron research infrastructure

ADS demonstrator

Past neutron irradiation facility

Pilot plant for LFR technology

The MYRRHA accelerator: background

- End 90's: several collaborative R&D activities worldwide on ADS accelerators (APT/AAA, TRASCO, etc. w/ especially a CEA/CNRS/INFN collaboration)
- 2001: "The European roadmap for developing ADS for Nuclear Waste Incineration", European Technical Working Group on ADS (chaired by C. Rubbia, ENEA)
- > 2002: pre-design "Myrrha Draft 1" (cyclotron 350 MeV)
- 2002-2004: MYRRHA is studied as one of the 3 reactor designs within the PDS-XADS FP5 project (coord. Framatome/AREVA)

(cyclotron turns into linac, first reliability analyses show a need for fault-tolerance capability)

The MYRRHA accelerator: background

- > 2005: updated pre-design "Myrrha Draft 2" (linac 350 MeV)
- 2005-2010: MYRRHA is studied as the XT-ADS demo within the EUROTRANS FP6 project (coord. FZK) (600 MeV linac conceptual design, R&D activities w/ focus on reliability)

- 2010: MYRRHA is on the ESFRI list, and officially supported by the Belgium government at a 40% level (384M€, w/ 60M€ already engaged)
- 2010-2014: MYRRHA accelerator advanced design phase w/ support from the EURATOM FP7 projects (MAX especially)
- 2015-2019: possible construction phase
- > 2020-2023: possible commissioning phase & progressive start-up

MYRRHA within EURATOM FP7: 2010-2014

The MAX project

<u>Goal</u>: deliver a consolidated reference layout of the MYRRHA linac with sufficient detail and adequate level of confidence in order to initiate in 2015 its engineering design and subsequent construction phase

MYRRHA Accelerator eXperiment research & development programme

1. Introduction

2. The MYRRHA accelerator concept

Some MAX recent achievments Perspectives

MYRRHA as an ADS demonstrator

Demonstrate the physics and technology of an Accelerator Driven System (ADS) for transmuting long-lived radioactive waste

Demonstrate the ADS concept (coupling accelerator + spallation source + power reactor)

MYRRHA proton beam requirements

Proton energy	600 MeV
Peak beam current	0.1 to 4.0 mA
Repetition rate	1 to 250 Hz
Beam duty cycle	10 ⁻⁴ to 1
Beam power stability	< \pm 2% on a time scale of 100ms
Beam footprint on reactor window	Circular Ø85mm
Beam footprint stability	< \pm 10% on a time scale of 1s
# of allowed beam trips on reactor longer than 3 sec	10 maximum per 3-month operation period
# of allowed beam trips on reactor longer than 0.1 sec	100 maximum per day
# of allowed beam trips on reactor shorter than 0.1 sec	unlimited

Panorama of high-power proton accelerators

MYRRHA proton beam requirements

Proton energy	600 MeV
Peak beam current	0.1 to 4.0 mA
Repetition rate	1 to 250 Hz
Beam duty cycle	10 ⁻⁴ to 1
Beam power stability	< \pm 2% on a time scale of 100ms
Beam footprint on reactor window	Circular Ø85mm
Beam footprint stability	< \pm 10% on a time scale of 1s
# of allowed beam trips on reactor longer than 3 sec	10 maximum per 3-month operation period
# of allowed beam trips on reactor longer than 0.1 sec	100 maximum per day
# of allowed beam trips on reactor shorter than 0.1 sec	unlimited

Extreme reliability level

The ADS reliability requirement

The ADS reliability requirement

- Beam trips longer than 3 sec must be very rare:
- To limit thermal stress & fatigue on the target window, reactor structures & fuel assemblies
- To ensure a 80% availability given the foreseen reactor start-up procedures
- Present MYRRHA spécifications: <10 beam trips per 3-month operation period (i.e. MTBF > 250h) – derived from the PHENIX reactor operation analysis
- Far above present HPPA accelerator performance MTBF is a few hours at PSI or SNS
- Far above present ADS specifications in US or Japan based on simulations
- In any case, reliability guidelines are needed for the ADS accelerator design:
- Strong design i.e. robust optics, simplicity, low thermal stress, operation margins...
- Repairability (on-line where possible) and efficient maintenance schemes
- Redundancy (serial where possible, or parallel) to be able to tolerate failures

Strategy for a fault in the injector = parallel redundancy

A failure is detected anywhere

Ø Beam is resumed

Strategy for a fault in the main linac = serial redundancy

- A failure is detected anywhere
- \rightarrow Beam is stopped by the MPS in injector at t₀
- The fault is localized in a SC cavity RF loop
- \rightarrow Need for an efficient fault diagnostic system

 $\ensuremath{\mathfrak{S}}$ New V/ ϕ set-points are updated in cavities adjacent to the failed one

 \rightarrow Set-points determined via virtual accelerator application and/or at the commissioning phase

- The failed cavity is detuned (to avoid the beam loading effect)
- \rightarrow Using the Cold Tuning System

	Ele: 776 [2	59.108 m] NGCOD : 10000	0 / 100000 Treat/Win - CEA/DSM/	DAPNIA/SACM	
Withindow		mm	mann	مممعممم	
Any on the second s		*****			
0	\$	100	150 Meter	200	250

• Once steady state is reached, beam is resumed at $t_1 < t_0 + 3sec$

 \rightarrow Failed RF cavity system to be repaired on-line if possible

Layout of the MYRRHA linac

INJECTOR BUILDING

Layout of the MYRRHA linac

MYRRHA Accelerator eXperiment research & development programme

Background The MYRRHA accelerator concept

3. Some MAX recent achievements

4. Perspectives

Low Energy Beam Transport (30 keV)

LEBT conceptual design achieved - Detailed technical design & construction phase has started (SCK*CEN + LPSC Grenoble)

Source from Pantechnik: commissioning at SCK

Space-charge compensation process

Trapping or ejection of

the particles

Residual gas

RFQ (30 keV - 1.5 MeV)

- Present reference = 4-rod structure at 176.1 MHz
- R&D at IAP Frankfurt on thermal effects
- Construction of RFQ 1-m prototype achieved (ready for high-power RF test)
- Next SCK*CEN step will be to build the full RFQ

Parameter	EUROTRANS	MYRRHA	SARAF
f [MHz]	352	176	176
W _{in} [MeV] / W _{out} [MeV]	0.05 / 3	0.03 / 1.5	0.02 / 1.5
U [kV]	65	40	32.5
E _{s, max} / E _k	1.7	1	0.8
a _{min} [mm]	2.3	2.9	2.7
m _{max}	1.8	2.3	2.7
g _{min} [mm]	2.6	3.6	3.7
ε _{in} ^{t., n., rms} [π mm-mrad]	0.2	0.2	0.175
ε _{out} ^{t., n., rms} [π mm-mrad]	0.21 / 0.20	0.22 / 0.22	0.19* / 0.19*
ε _{out} ^{L, rms} [π keV-deg]	109	64.6	36*
<i>L</i> [m]	4.3	4.0	3.8
T [%] / T _{10mA} [%]	~100 / ~100	~100 / ~100	95.5* / 92.3*
$R_{\rm p} [{\rm k}\Omega{\rm m}]$	61 (MWS)	67 (after SARAF)	67 (meas.)
P _c [kW/m]	69.8 (MWS, +20%)	23.5	15.8

ited by A. Bechtold using the RFQSim code without image effects or multipole effects. MYRRHA RFQ parameters & emittance evolution

CH booster (1.5 – 17 MeV)

As compact as reasonably possible

Presently based on the KONUS beam dynamics concept, but a safer alternative design is in-work

MYRRHA reference injector layout

Construction of 176 MHZ CH prototypes achieved (ready for tests)

F. Bouly, ThEC13, CERN, 30/10/2013.

Medium Energy Beam Transport (17 MeV)

Conceptual design of the doubled injector connection

Preliminary definition of associated fast switching procedures

Main superconducting linac (17 – 600 MeV)

- Design of the 230 metres SC linac incl. fault-tolerance capabilities
- Main concern = physics of beam halo during fault-recovery scenarios
- Generic R&D for spoke-type cavities
- Design of MYRRHA spoke cryomodule

Prototyping of 2 MYRRHA spoke cavities is

Section #	#1	#2	#3		
E _{input} (MeV)	17.0	80.8	184.2		
E _{output} (MeV)	80.8	184.2	600.0		
Cav. Technology	Spoke	Elliptical	Elliptical		
Cav. freq. (MHz)	352.2	704.4			
Cavity optimal β	0.375	0.510	0.705		
Nb of cells / cav.	2	5	5		
Focusing type	NC quadrupole doublets				
Nb cav / cryom.	2	2	4		
Total nb of cav.	48	34	60		
Nominal E _{acc} * (MV/m)	6.4	8.2	11.0		
Synch. phase (deg)	-40 to -18	-36 to -15			
4 mA beam load / cav. (kW)	1.5 to 8	2 to 17 14 to 32			
Nominal Qpole gradients (T/m)	5.1 to 7.7	4.8 to 7.0	5.1 to 6.6		
Section length (m)	73.0	63.9	100.8		

Main parameters of the MYRRHA linac

 $^{*}E_{acc}$ is given at optimal beta and normalized to L_{acc} = $N_{gap}.\beta.\lambda/2$

Main superconducting linac (17 – 600 MeV)

Demonstration of 700 MHz cavity CW RF operation in accelerator-like environment

Present status = couplers conditioned, first 80kW 2K operation should come very soon

F. Bouly, M. El Yakoubi, et al., Proc. SRF 2013

stituto Nazionale li Fisica Nucleare

Main superconducting linac (17 – 600 MeV)

Beam simulations

Reference source-to-target beam simulation

Benchmarking activities (TraceWin, LORASR, Track)

➢ Monte Carlo error studies will start soon

Definition of beam time structure & power control strategy

J-L. Biarrotte et al., Proc. TC-ADS 2013

ISOL@MYRRHA extraction (600 MeV)

Preliminary layout of the ISOL@MYRRHA extraction zone

High Energy Beam Transport (600 MeV)

Preliminary design exists, incl. PSI-like 2.4 MW beam dump & raster scanning on target

Interface with reactor to be further reworked

Layout of the MYRRHA beam lines to reactor & dump

Systems, reliability

SNS linac reliability model has been developed & successfully benchmarked with operation data

MYRRHA linac reliability model is in-work

A. Pitigoï, Proc. TC-ADS 2013

BEAM STOP (MPS) CAV-(n) CONTROL CAV FAULT DETECTION CAVs CAVs CONTROL FAULT DIAGNOSE CAV-(n) DETUNING (CCS-n-1 (Diagnostics) Full Analysis-cmpble? n-1 (CTS-n) n-2 (ACC CTRL SYST-ACS) NEW RF SET-POINTS load/predictive calc) BEAM (COMP Syst - CS) RECOMMISSIONING EMPRESARIOS AGRUPADOS AV FAULT COMPENSATION Leading the Compensation Executing the Compensation (ACS-CS) (CCSs-CAVs) CCS Fault Tree CAV Fault Tree

Local compensation sequence: basis for « COMP » fault tree

R&D on 700 MHz solid-state amplifiers Preliminary design of MYRRHA cryogenic plant T. Junguera et al., Proc. SRF 2013 ACCELERATORS AND CRYOGENIC SYSTEMS 2 x 16Kw bloc **Proprietary Information** TRON DEVICES bernard DARGES

MYRRHA Accelerator eXperiment research & development programme

1. Background

- 2. The MYRRHA accelerator concept
- 3. Some MAX recent achievments

4. Perspectives

The successful & reliable production of the MYRRHA high power & stable beam is a very interesting challenge

 \odot Huge R&D investment is still needed to fully demonstrate the feasibility & prepare for construction

Present R&D is mainly dedicated to general design and developments on a few main primary components. It will need to be push further towards an engineering design phase

Construction of a full injector demonstrator – started with the LEBT (SCK/LPSC)

 \circ Prototyping: CH-DTL & RFQ at IAP - 700 MHz experiment & spoke design at IPNO

MAX is going on until October 2014 (tbc)

• A possible follow up (2015-2018) is under study

➢ Further implication from the SCK*CEN side will be required if MYRRHA construction is to be launched in the 2/3 next years

Nowadays, present SCK accelerator group is 3 people...

MYRRHA Accelerator eXperiment research & development programme

Thank You for your attention!

http://ipnweb.in2p3.fr/MAX/

COORDINATOR

http://myrrha.sckcen.be/

GOETHE

ACCELERATORS AND

CRYOGENIC SYSTEMS

