

Thorium-Loaded Accelerator-Driven System Experiments in Kyoto University Research Reactor Institute

Cheolho Pyeon

Research Reactor Institute, Kyoto University, Japan pyeon@rri.kyoto-u.ac.jp

Contents

- Background and Purpose
- Composition of ADS in Kyoto Univ. (KUCA + 100 MeV protons)
- Kyoto University Critical Assembly (KUCA)
- <u>Fixed-Field</u> <u>Alternating</u> <u>Gradient</u> (FFAG) accelerator
- > ²³²Th plate irradiation experiments in <u>critical state</u>
- Analyses of ²³²Th fission and capture reactions
- ²³²Th-loaded ADS experiments in <u>subcritical state</u>
- Static analyses: ²³²Th capture reaction rates
- Kinetic analyses: Subcriticality by varying
- Core spectrum
- External neutron source

Summary

Background and Purpose

Background

> An original concept of ADS for producing energy and transmuting MA and LLFP

• Energy amplifier system and Nuclear transmutation

- > ²³²Th conversion study in thorium fuel cycle
- Preliminary study on fission and capture reactions leading to

conversion ratio (Capture/ Fission) in Critical state analyses

- > ²³²Th-loaded ADS for the variation of
- Core spectrum: Fuel -> Thorium, HEU and NU

Moderator -> Polyethylene, Graphite, Beryllium and Aluminum

• External source: 14 MeV neutrons vs. 100 MeV protons

Purpose

- Conduct ²³²Th conversion study preliminarily in critical state
- Investigate the neutronic characteristics of Th-ADS through the experiments and the accuracy of numerical (MCNPX) analyses

# of sectors	12
Energy	2.5 – 150 MeV
Repetition rate	120 Hz
Average beam current	1 nA
Rf frequency	1.5 - 4.6 MHz
Field index	7.5
Closed orbit radius	4.4 - 5.3 m

ADS composition in KUCA

However, as preliminary, attention should be paid to the following:

- <u>Capture reactions</u> (by thermal neutrons moderated from high-energy neutrons)

233
Pa $\xrightarrow{\beta^-}_{26.967d}$ > 233 U

- Fission reactions (by high-energy neutrons from spallation neutrons)

 232 Th(n, f) (Threshold of 1 MeV neutrons)

KUCA core (Solid-moderated core)

- KUCA core -A solid-moderated and -reflected core

Fig. Image of KUCA core and fuel assembly loaded

Fig. KUCA core

²³²Th plate irradiation experiments

Results of ²³²Th plate irradiation exp.

Fig. Measured γ -ray spectrum of irradiated ²³²Th plate

- Critical exp. (Confirmed)

- Necessity of high-power operation in the core
- Accuracy of numerical analyses by MCNPX
- Discrepancy of ²³²Th fission and capture reaction rates between exp. and cal.
- Probability of subcritical experiments?

Table Neutron flux and Cd ratio

	Measurement	Calculation	C / E
Thermal neutron flux (1/s/cm ³)	(5.87±0.05)×10 ⁷	-	-
Cd ratio	2.93 ± 0.02	3.04±0.08	1.04±0.05

Table Measured reaction rates (RR) and C/E values

Reaction	Nuclide	Measured RR (1/s/cm ³)	C / E
Capture	²³³ Pa	$(5.82 \pm 0.04) \times 10^{6}$	2.18±0.04
	⁹¹ Sr	$(1.42 \pm 0.04) \times 10^{5}$	1.39±0.05
Fission	⁹² Sr	$(1.46 \pm 0.05) \times 10^{5}$	1.36±0.06
	⁹⁷ Zr	$(1.47 \pm 0.02) \times 10^{5}$	1.35±0.03
	¹³⁵ I	$(1.50\pm0.04) \times 10^{5}$	1.32±0.04
	¹⁴² La	$(1.56 \pm 0.05) \times 10^{5}$	1.27±0.05

Experimental Benchmarks on the Th-Loaded ADS at KUCA

C. H. Pyeon, et al., Ann. Nucl. Energy, 38, 2298 (2011).

Exp. Settings of ²³²Th-loaded ADS Exp.

Fuel size: 5×5

Experimental settings

²³²Th-loaded ADS with Graphite

Upper

- Fuel size: 7 × 7
- Core volume: 38.71 x 38.71x 30.48 cm³
 - (2.4 times than Th-core)
- k_{eff} = 0.02399 (ENDF/B-VII.0)

C. H. Pyeon, et al., Ann. Nucl. Energy, 38, 2298 (2011).

Static Experiments in ²³²Th-loaded ADS

 ²³²Th fission reactions by Monte Carlo approach

$$RR_{total} = RR_{source} + RR_{fission}$$

Solution

 Convert Th fission reactions to capture reactions ("fission turnoff" option)

$$RR'_{total} = RR_{source} + RR_{capture}$$

■ Finally,

$$RR_{fission} = RR_{total} - RR'_{total} + RR_{capture}$$

Fig. Comparison of measured and calculated reaction rates in ²³²Th-loaded core

<u>Confirmation of ²³²Th fission reactions generated by spallation neutrons</u> (using "fission turnoff" option in MCNPX)

Comparative study on

- Neutron spectrum (core)
- Subcriticality (core)
- External neutron source (target)

C. H. Pyeon, et al., Nucl. Sci. Eng., (2013). [in print]

X-sec. proportionality and Spectrum

Fig. Proportionality of X secs. of ²³²Th and ¹¹⁵In in thermal neutron range

- Measurement (Foil activation method)

Source:

14 MeV neutrons -> ${}^{93}Nb(n, 2n){}^{92m}Nb$ (9 MeV threshold) 100 MeV protons -> ${}^{115}In(n, n'){}^{115m}In$ (0.3 MeV threshold) > <u>Core</u>: In capture (~ Th capture; Proportionality) -> ${}^{115}In(n, \gamma){}^{116m}In$ reactions

Fig. Neutron spectrum in injection of 100 MeV protons

Fig. Neutron spectrum in injection of **<u>14 MeV neutrons</u>**

²³²Th-loaded ADS with 14 MeV neutrons

40.0

Fig. Core configuration of ²³²Th-loaded cores

Distance from T target [cm]

Fig. Comparison of measured ¹¹⁵In (n, γ)^{116m}In reaction rates in ²³²Th-loaded cores

Fig. Th-PE cells

Fig. Th-Be cells

C. H. Pyeon, et al., Nucl. Sci. Eng., (2013). [in print]

Confirmed

Effect of neutron spectrum on profile of ²³²Th capture reactions for 14 MeV neutrons

Exp. vs. Cal. (14 MeV neutrons)

Fig. Core configuration of ²³²Th-Poly. cores

Table MCNPX	results	of keff	in	Th	cores
-------------	---------	---------	----	----	-------

Core	k _{eff}
Th-PE	0.00613
Th-Gr	0.00952
Th-Be	0.00765
Th-HEU-PE	0.58754
NU-PE	0.50867

Results

- Good agreement with measured and calculated (MCNPX) reaction rates
- No difference between ENDF/B-VII.0 and JENDL-3.3

Profile of ²³²Th capture reaction rates

Fig. Core configuration of ²³²Th-loaded core

Effects

- 1) Neutron spectrum in core
- 2) External neutron source at target
 - (14 MeV neutrons vs. 100 MeV protons)

Note: Protons; 100 MeV, 50 mm dia., 0.1 nA Target; W, 50 mm dia., 9 mm thick

Fig. Measured ¹¹⁵In $(n, \gamma)^{116m}$ In reaction rates (**100 MeV protons**)

Fig. Measured ¹¹⁵In (n, γ)^{116m}In reaction rates (**14 MeV neutrons**)

C. H. Pyeon, Kyoto Univ. 18

Pulsed neutron method (232Th-loaded ADS)

Fig. Core configuration of ²³²Th-Poly. Cores (**100 MeV protons**)

Table Results in keff (³He #3; Area ratio method)

	Cal.	Exp.		
Core	MCNPX	100 MeV Protons	14 MeV Neutrons	
Th-HEU-PE	0.5876	0.7346	0.6577	

 β_{eff} = 8.491E-03; SRAC-CITATION 107-G, 3-D α = **5065** ± 28 (100 MeV Protons)

5288 ± 13 (14 MeV Neutrons)

C. H. Pyeon, et al., Nucl. Sci. Eng., (2013). [in print]

Fig. Results in Th-HEU-PE with 100 MeV protons

Th-loaded ADS benchmarks

Table List of Th-loaded ADS cores

Core	Cell patter	$k_{e\!f\!f}$
Th-PE	1/8"Th+1/2"PE	0.00613
Th-Gr	1/8"Th+1/2"Gr	0.00952
Th-Be	1/8"Th+1/2"Be	0.00765
Th-HEU-PE	1/8"Th+1/16"HEU+3/8"PE	0.58754
NU-PE	1/8"NU+1/2"PE	0.50867
Th-HEU-5PE	1/8"Th+5*(1/16"HEU+3/8"PE)	0.85121
Th-HEU-Gr-PE	1/8"Th+4*(1/16"HEU+1/2"Gr)+1/8"PE	0.35473

* Contributed for IAEA on Feb. 2013

Subcriticality measurements

Table List of subcriticality data in all the cores shown in previous page

Core	14 MeV neutrons		100 MeV protons	
	PNS method	Noise method	PNS method	Noise method
Th-PE	Available	Available	-	-
Th-Gr	Available	Available	-	-
Th-Be	Available	-	-	-
Th-HEU-PE	Available	Available	Available	Available
NU-PE	Available	-	-	-
Th-HEU-5PE	Available	Available	Available	Available
Th-HEU-Gr-PE	Available	Available	Available	Available

* Contributed for IAEA on Feb. 2013

Summary

> <u>ADS project</u> in Kyoto Univ. Research Reactor Institute

• Energy amplifier system using ADS with high-energy protons

232Th plate irradiation experiments

- Conversion study on ²³²Th fission and capture reactions in critical state:
 - -> Discrepancy between experiments and calculations

> Thorium-loaded ADS experiments

- ADS experiments with 100 MeV protons and 14 MeV neutrons
- □ Static: Reaction rate analyses of ²³²Th capture reactions
- Kinetic: Subcriticality by the Pulsed neutron method by varying
- Neutron spectrum in the core
- External neutron source at the target

Future plans

- Subcritical multiplication analyses of M and k-source
- Critical experiments on investigation of further captures (²³²Pa -> ²³³U) and fissions (²³³U)
- > Investigate the probability of conversion analyses in subcritical states

PHYSOR2014 in Kyoto

- Int. Conf. Physic of Reactor in 2014 (PHYSOR2014; ANS Topical Mtg.) <u>28th Sep. to 3rd Oct. 2014</u>
- Sub-title: "The Role of Reactor Physics towards a Sustainable Future"
- ≻ Key dates
 - Start "Paper submission" and "Registration" on <u>25th Oct. 2013</u>
 - Deadline of paper submission on 20th Dec. 2013
- Technical sessions
 15 Tracks, 8 Special sessions,
 One-day Workshop (such as ADS)
- Access to, <u>http://physor2014.org/</u>

