The Palomar Transient Factory and Implications for IceCube

Eran Ofek Weizmann Institute

Talk Layout

- ***** PTF goals/overview
- ***** Capabilities and products
- **★** Highlights
- **★** Implications for IceCube
- The future: ZTF ULTRASAT

PTF collaboration

Law et al. 2009, Rau et al. 2009

PI: S. R. Kulkarni

Caltech, LCOGT, Berkeley, LBL, IPAC, Columbia, Oxford, Weizmann

* 48" Oschin Schmidt camera (Palomar obs.) * 7.26 deg² FOV (92 Mpix)

* 48" Oschin Schmidt camera (Palomar obs.)
* 7.26 deg² FOV (92 Mpix)
* Scale: 1"/pix, lim. mag ~21

- * 48" Oschin Schmidt camera (Palomar obs.)
- ***** 7.26 deg² FOV (92 Mpix)
- ★ Scale: 1"/pix, lim. mag ~21
- Robotic telescope & scheduler
 Full automatic operation
 Auto. Selection of science targets

- 60s exposure + 35s readout ~500,000 deg² yr⁻¹
- **\star** Filters: g, R, H α +
- ★ Real time image Subtraction and Transient classification

PTF observing strategy

Observing strategy CHANGES ALL THE TIME

70%: 1-3 day cadence (flexible)
10%: All sky Hα survey
20%: Galactic science

PTF followup

PTF follow-up telescopes

P200

OTIS

Calibrated photometry

Ofek et al. 2012a,b

Photometry calibration good to 2-3%

Relative photometry

Method presented in: Ofek et al. 2011 ApJ 740, 65

Relative photometry ~3-5mmag

What did we observe so far?

Deep coadd

Deep sky: ~10 images lim. mag. ~22.3 ~100 images lim. mag. ~23.5

PTF Science highlights Galactic

 * ~200 dwarf novae; 7 AM CVn Levitan et al. 2011; Levitan et al. 2013
 * Asteroids rotation * Protostellar objects
 Covey et al. 2011 Miller et al. 2011

PTF Science highlights Extragalactic

 Since March 2009: >10,000 transient candidates 1861 spectroscopically confirmed SNe 1256 Ia 89 Ibc 445 II

 ~3% of these "SNe" are weird and hard to classify into existing scheme: e.g., faint and fast, Ca rich, luminous, etc.

Kasliwal et al. 2010; Kasliwal et al. 2011; Gal-Yam et al. 2011; Smith et al. 2011; Maguire et al. 2011; Čenko et al. 2010;...

 First possible detection of a GRB/orphan In optical wavebands
 Cenko et al., submitted

Implications for IceCube

Followp of double neutrino events (~10/yr)

Constrains on jet-component in CC SNe Large sample of nearby CC SNe with explosion time known to better than a day.

Collisonless shocks from type-IIn SNe

Shock breakout in CSM PTF 09uj

Ofek et al. 2010, Apj

Shock breakout / PTF PTF 09uj

$\tau = \frac{c}{v}$
$aT^4 \approx \frac{7}{2}\rho v^2 \approx \frac{7c}{2t\kappa}$
$L_{\lambda} \approx \frac{v}{c} L_{\lambda}^{BB} \approx 4\pi^2 r^2 v \frac{2k_B T}{\lambda^4}$
r = vt

Ofek et al. 2010 See also: Chevalier & Irwin 2011; Balberg & Loeb 2011;...

 $v \sim 13,000 \text{ km/s}$ $n \sim 5 \times 10^{10} \, cm^{-3}$ $T \sim 90,000 K$ $M \sim 0.3 M_{sun}$ $M \sim 0.1 M_{sun}$ / year $|E \sim 5 \times 10^{50} erg$

Collisionless shocks

* Katz et al./Murse et al. 2011: If dense CSM then the radiation mediated and dominated shock transforms to a collisionless shock (TeV netrinos...)

> Chevalier & Irwin 2012 Svirski et al. 2012

★ X-rays produced at late times

Sample of 28 SNe IIn; Ibn and SLSN For which Swift-XRT observations are available... Ofek et al. 2013a

Collisionless shocks Ofek et al. 2013a

Collisionless shocks Ofek et al. 2013a

Mass loss measurements

Ofek et al. 2013b, Nature in press

Mass loss measurements

Ofek et al. 2013c, submitted

ZTF

Thinking about the next project...

- ZTF will have a ~36 deg² camera Mounted on the 48" schmidt telescope
- ★ ~16,000 deg² day⁻¹
- **★** Scheduled for 2015

ULTRASAT

Thinking about the next project...

- ★ Wide field UV telescope (484 deg²)
- Detection of >100 young SNe/yr
- **★** Scheduled for 2018

End Thank you!

AM CVn

* Primary background noise for LISA

FU Ori and other ★ PTF10qpf: new FU Ori star

Planets around M-dwarfs

Law et al., in prep.

- ★ Possible to find planets in the habitable zone...
- ★ Calibrating the mass-radius relation of M-dwarfs

Planets around M-dwarfs

Some eclipsing M-dwarfs we found...

Asteroids rotation

Poolishok et al., submitted

Asteroids rotation

Poolishok et al., submitted

HST UV spectra of Ia SNe PTF Can find SN Ia early PI: R. Ellis

HST UV spectra of Ia SNe

Cooke et al. 2011

The mean UV spectrum of the z~0 and z~0.5 agree, but some differences in metallic absorptions

- >23 kpc from NGC 1032 No host: M_R>-7 Spec: He burning products Ca reach
- Possibilities: Acc. Induced Collapse .Ia
- ★ May solve puzzles:

⁴⁴Ca in Solar System ⁴⁴Ti->⁴⁴Ca via b decay Positrons annihilation in Galactic bulge

(a)

Kasliwal et al. 2011; Sullivan et al. 2011

Kasliwal et al. 2011; Sullivan et al. 2011

Kasliwal et al. 2011; Sullivan et al. 2011

Data Release

M Gmail - Inbo ×	📴 [1111.2334 × 🚺 [1111.2056 × 🕻 🎬 PTF Target 🛛 × 🎦 Contact Mar × 🎽 PTF Target 1 × 🌾 swiftxrt.dvi 🔹 🔣 Index of /pr. ×) 👁 IRSA 🛛 💉 💽	
< 🗼 🧲 🔇 kan	naloa.ipac.caltech.edu/applications/ptf/#id=Hydra_ptf_ptf_1&projectId=ptf&startIdx=0&pageSize=0&shortDesc=Search%20by%20Position&isBor 😭 😭	1 💷 🔍
ADS 🜞 Wolfram	n Alpha 🍙 Eran 📓 Catalogue 📓 Images 📓 Ephem 📓 Telescopes 📓 Reference 📓 Imported From F	
Searches Hist	NASA / IPAC Infrared Science Archive	est <u>Sian In</u> ?
	Search by Position	
	Search By Search by PTF Field ID Search by PTF Intersition Status This The Search by PTF Intersition Status Examples I'm Bit Thigh 13' '12.34 34.85' '46.53, -0.251 gaf '1911/m32s 11d58m02s equ (2000' '12.3, 85 b1950') Examples for PTF name resolver: 10fgs, 09ab Search Type (Region Intersection): Return Image Size (leave blank for full images): Return only the most centered image containing the target: Diptional constraints for Single Image (Level 1) data Search Clear ?	
	3	
ipac	Contact the IRSA Help Desk IRSA Charter :: IRSA Acknowledgement :: Privacy/Security Policy 132 Bes 1, Bart Ovider	() 13 2011 04:02 PM PDT
sn2010hy-gal-	-2fim v sn-polk-201111fim v radio_v2.eps v Show all downlo	ads X

Data Release

★ First public data release: 2012

is ₿V	Volfram Alpha 📄 Eran 📄 C	atalogue 📄	Images 📄	Ephem	i Telesco	opes 📔 Refer	ence 🧯	lmport	ed From F.		
CONTRACTOR OF			rarad	Sair	-	Arobiv				CHER !	Gu
RST			areu		ence	Archiv				1.49	and the second
Service Contractor	IRSA Mission A	rchive Search	Related D	Data Arc	hives To	ools & Services	Help	De lieres		A CARL	The second s
Searches	History Preferences	Help	Catalogs	٦							Backg
Soarch by	Desition m81: Tupe=CENTER										
Search by	POSITION MOL, TYPE-CENTER										
evel 1 Data											L1 Image Coverage
repare Down	load [4	1 of 19 🕨	(1 - 50 of 904)	l)			Save	Text View	Add filters	E 🗷 🐂	PTF Level 1 Image 1/8x
expid	obsdate	crval1	crval2	filter	ccdid	ptffield	seeing	airmass	moonilf	moonesb	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
1868	2009-02-01 03:20:09.783000	149.0181502	68.8273345	G	6		0.00	0.00	0.31	0.00	
1952	2009-02-01 03:21:52.433000	149.0167504	68.8273111	G	6		0.00	0.00	0.31	0.00	
1818	2009-02-01 03:23:35.382000	149.0183579	68.8273195	G	6		0.00	0.00	0.31	0.00	
1794	2009-02-01 03:25:18.433000	149.0294377	68.9203394	G	6		0.00	0.00	0.31	0.00	
1853	2009-02-01 03:27:01.282000	149.0181803	68.8273551	G	6		0.00	0.00	0.31	0.00	
1936	2009-02-01 03:33:25.433000	148.9645696	06.7291404	R	6		0.00	0.00	0.31	0.00	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
1790	2009-02-01 03:35:08.383000	148.9727030	60.0292007	R	6		0.00	0.00	0.31	0.00	
1905	2009-02-01 03:36:51.232000	140.9440750	69.0203997	P	0		0.00	0.00	0.31	0.00	
1932	2009-02-01 03:30:33:332000	149.0151447	68 8271755	D	6		0.00	0.00	0.31	0.00	a taken to an a start
1916	2009-02-01 05:14:51 333000	149.0168404	68 8271378	R	6		0.00	0.00	0.31	0.00	
1835	2009-02-01 05:16:35 283000	148 9646335	68,7289842	R	6		0.00	0.00	0.31	0.00 -	
1766	2009-02-01 05:18:19.382000	148.9432578	69.0284572	R	6		0.00	0.00	0.32	0.00	
1863	2009-02-01 05:20:03.483000	149.0177799	68.8273186	R	6	N	0.00	0.00	0.32	0.00	
1947	2009-02-01 05:21:47.883000	148.9645639	68.7291069	R	6	K3	0.00	0.00	0.32	0.00	
3126	2009-02-25 09:30:16.183000	148.9871234	69.7847682	G	2		3.22	0.00	0.00	0.00	•
4140	2009-02-04 08:32:42.532000	148.9645337	68.7292202	R	6		0.00	0.00	0.66	0.00	· · · · · · · · · · · · · · · · · · ·
4100	2009-02-04 08:35:51.233000	149.5211126	68.8425025	G	6		0.00	0.00	0.66	0.00	· · · · · · · · · · · · · · · · · · ·
4232	2009-02-04 08:37:47.332000	149.5210956	68.8424130	G	6		0.00	0.00	0.66	0.00	s /a
4266	2009-02-04 08:39:33.433000	149.0175051	68.8273949	G	6		0.00	0.00	0.66	0.00	
4237	2009-02-04 08:41:19.633000	149.0175641	68.8274660	G	6		0.00	0.00	0.66	0.00	and the second second
4272	2009-02-04 08:43:05.683000	149.5209933	68.8423713	G	6		0.00	0.00	0.66	0.00	and the second second
4163	2009-02-04 08:44:51.983000	149.0165301	68.8272289	G	6		0.00	0.00	0.66	0.00	
4049	2009-02-04 08:48:30.582000	148.9471327	68.6138940	G	8		0.00	0.00	0.66	0.00	
4077	2009-02-04 09:35:27.433000	149.0175433	68.8275391	G	6		0.00	0.00	0.66	0.00	
4114	2009-02-04 09:37:14.633000	149.0176535	68.8275316	G	6		0.00	0.00	0.66	0.00	
4289	2009-02-04 09:39:01.883000	149.3912730	68.7900084	G	6		0.00	0.00	0.66	0.00	
4252	2009-02-04 09:40:48.983000	149.0175310	68.8274942	G	6		0.00	0.00	0.66	0.00	
4276	2009-02-04 09:42:36.033000	149.5209735	68.8424456	G	6	100037	0.00	0.00	0.66	0.00	
6846	2009-03-27 09:02:20.829000	148.5678855	69.6143869	G	2	100037	4.58	1.45	0.01	0.00	
6/50	2009-03-27 10:27:43.229000	148.56///29	09.0144566	G	2	100037	4.63	1.09	0.01	0.00	
9154	2003-03-31 03.34.40.223000	149 1548756	69.9854610	6	2	100037	2.09	1.27	0.34	-0.92	
9130	2009-04-01 04:45:59:979000	148.6094503	69 6940329	6	2	100037	2.09	1.23	0.34	-0.94	
, 5100		210.0004000	00.0040020		4	100007	2.11	2.20	0.00	•	

Luminous supernovae The Mysterious SCP 06F6

Luminous supernovae

Quimby et al., 2011, Nature

Luminous supernovae

Quimby et al., 2011 Nature

Shock breakouts & PTF

- ★ First photons emerge from the Sne when the photon diffusion time scale become shorter than the hydrodynamical time scale (i.e., photons are moving faster than the ejecta).
- Time scale and luminosity sensitive probes of progenitor radius
 - e.g., Colgate 1974; Matzner & McKee 1999 Nakar & Sari 2010; Rabinak & Waxman 2011 Obs: Soderberg+2008,...

Limits on progenitor radii

PTF 11kly/2011fe (la) Nugent et al., 2011 Nature (see also: Bloom et al. 2012; Brown et al. 2012)

PTF 10vgv (lc) Corsi et al., 2011 ApJ

Shock breakout examples

PTF 11agg

PTF 11agg

The hosts of CC SNe

Arcavi et al. 2010

Ic-BL and IIb are more common in dwarf hosts, Stripped CC (Ic) are not seen in dwarf hosts.

Probably because in lower metallicity hosts, Metallicity-driven mass loss is reduced.

PTF 11agg

Shock breakout / Intro

- Photons first emerge from SN (breakout) when they diffuse ahead of the shock faster than the shock propagates
- **+** Happens at optical depth: $\tau = c/v$
- * duration: ~r/c
- Decay time: ~r/v

H alpha survey

H alpha survey

H alpha survey

Fast supernovae: 10bhp

Kasliwal et al., ApJ 723, 98

Very fast: decay ~5 days, M_R~-17 (e.g., similar to SN200bj, [Poznanski+10])

Fast supernovae: 10bhp

Kasliwal et al., ApJ 723, 98

If powered by ⁵⁶Ni then Ni mass ~0.02 M_{sun} and SN quickly becomes optically thin to γ-rays.

Luminous red nova PTF 10fqs in M99

Kasliwal et al., 1005.1455

★ Faint/slow event in M99: M_R~-11

Kasliwal et al., 1005.1455

PTF 10fqs

Search for SB in Chandra archive with Mike Muno

- Downloaded the entire Chandra archive
- Search for transients and highly variable
 Objects (on short time scale)
 - First pass completed: complete for events brighter than 40 counts
 - No SN 2008D-like events (Soderberg et al. 2008)
 - Next: calc. efficiency and extend to faint sources

Relative photometry Solution using linear least squares Solving per field (overlap between fields not guaranteed) i-star (1..p), j-image (1..q) m_{ii} - instrumental mag σ_{ii} - instrumental mag err

$$m_{ij} = \overline{m}_j + z_i$$

Relative photometry Using linear least squares

$$m_{ij} = \overline{m}_j + z_i$$

1	0	0	•••	1	0	0	•••	$ m_{11} $
1	0	0	•••	0	1	0	$\ldots _{\vec{D}}$	m_{12}
1	0	0	•••	0	0	1	: - =	$= m_{13} $
•	•	•	•		•	•••	•	
0	1	0	•••	1	0	0	•••	$ m_{21} $
0	1	0	•••	0	1	0		m_{22}
0	1	0	•••	0	0	1	•	m_{23}
•	•	• •	•••		•	•••	•••	
•								

 \vec{P}

=

H ("design matrix") Observations

Relative photometry Solution using linear least squares

We need to solve (in the presence of errors):

$$\chi^{2} = (\vec{m}_{ij} - HP)^{T} |\sigma_{ij}^{2}|^{-1} (\vec{m}_{ij} - HP)$$

Relative photometry Simultaneous absolute calibration

1	0	0	•••	1	0	0	•••	$ m_{11} $
1	0	0	•••	0	1	0	$\cdots \Big _{\vec{D}}$	$\sim m_{12} $
1	0	0	•••	0	0	1	:	$= m_{13} $
•	•	•	•		•	•••	•••	
0	1	0	•••	1	0	0	•••	$ m_{21} $
0	1	0	•••	0	1	0	•••	m_{22}
0	1	0	•••	0	0	1	:	<i>m</i> ₂₃
	• •	• •	••••		• •	•••	•••	
• •								
0	0	0	•••	1	0	0	•••	M_1
0	0	0	•••	0	1	0	•••	
0	0	0	•••	0	0	1		M_{j}
:	•	• •	•		•	•••	•••	

H is (pq)x(p+q) matrix However, rank is p+q-1

Adding calibration block

Calibrated photometry

Ofek et al. 2011 submitted

Photometry calibration good to 2-3%

 Using SDSS stars as standard stars to calibrate fields outside SDSS footprint (photometric nights)

Relative photometry Additional de-trending

We can add more columns to H and P. For example: Airmass x color term

 Δm_b^{obs}

Positional terms

Multiple CCDs (i.e, overlap)

The SN2005E family: 09dav

40kpc from putative spiral host Abs R mag \sim -15 Fast: 1 mag in 10 day Very red, g-r = 1.2

Similar to SN1991bg but with He Hydrogen in nebular phase

Kasliwal et al., in prep. Sullivan et al., in prep.

The SN2005E family: 10iuv

37 kpc from putative host Abs R. mag ~ -15. Fast: 1 mag in 10 days Intriguing Nebular Spectra

Kasliwal et al., in prep.

