Swift- and γ-ray Follow-Up of neutrinos (XFU / GFU)

Andreas Homeier

Realtime Astroparticle Physics
Bonn
February, $4^{\text {th }}-6^{\text {th }} 2012$

Overview
transient event (SN,GRB,...)

See talk by Markus Voge

Gamma Ray Bursts

Active Galactic Nuclei

Active Galactic Nuclei

- massive central black hole ($10^{8} \mathrm{M}_{0}$)
- relativistic jets
- Neutrinos \rightarrow hadronic acceleration
- emission from radio to TeV
- high variability
- flare duration up to weeks

IceCube Neutrino Detector

Event selection

Event selection

Gamma-ray follow-up with MAGIC \& Veritas

Operation

- Started Feb, 2012
- Running stable; alerts are being sent

Resources

- Alerts per year: MAGIC 5; Veritas 1
- Trigger threshold: MAGIC 3.2 σ; Veritas 3.5 o

Latency

- IceCube: ~5 min
- MAGIC / Veritas: daytime dependent

Results

- No results yet
- Will cover additional source in IceCube's follow-up program

X-ray follow-up with Swift

Latency

- IceCube latency: 5 minutes
- Swift latency: 1 - 4 hours

Resources

- 7 alerts per year
- 7 tilings needed
- ~70\% efficiency
- 2 ks per field
\rightarrow intensive follow-up if fixed criteria are met

X-ray follow-up with Swift

Operating since Feb. 2011

- 14 alerts sent to Swift
- No intensive follow-up
- How can we increase our sensitivity?

In development: high energy singlets

Singlet vs Doublet Stream

Toy model

- Measured muon spectrum
- Background: $E^{-2.5}$
- Signal: E-1.9
- Optimization Parameter
- Energy threshold $E_{t h}$
- Opening angle $\Psi_{t h}$ between doublets
- Fixed alert number

Detection probability
$P=P\left(E>E_{t h} \mid n=1\right) \cdot P(n=1)+P\left(\Psi<\Psi_{t h} \mid n=2\right) \cdot P(n=2)$
$\frac{P(n=2)}{P(n=1)}=\frac{<n>}{2}$
$\langle n\rangle$: average number of expected neutrinos per GRB in IceCube

Singlet vs Doublet Stream

Toy model

- Measured muon spectrum
- Background: $E^{-2.5}$
- Signal: E-1.9
- Optimization Parameter
- Energy threshold $E_{t h}$
- Opening angle $\Psi_{t h}$ between doublets
- Fixed alert number

Event selection (XFU): Singlet vs Doublet Stream

Toy model

- Measured muon spectrum
- Background: $\mathrm{E}^{-2.5}$
- Signal: E-1.9
- Optimization Parameter
- Energy threshold $E_{t h}$
- Opening angle $\Psi_{t h}$ between doublets
- Fixed alerts number

Conclusion

Multimessenger

- Important strategy for the future
- Neutrinos: Smoking gun for hadronic acceleration

IceCube follow-up programs

- No discoveries, yet
- Trying to improve
- High energy singlets $\rightarrow 4 \pi$ coverage
- Covering SNe (choked GRBs), GRBs, AGNs
- Covering wide range of electromagnetic bandwidth

Questions?

Participants

Ice Cube

Doug Cowen
Ignacio Taboada
Anna Franckowiak
Andreas Homeier
Tyce DeYoung
Marek Kowalski
Peter Mezsaros
Sebastian Böser
Erik Blaufuss

University of Leicester Phil Evans
Julian Osbourne

Swift ops

Miles Smith

Neil Gehrels (PI) John Nousek

David Burrows
Jamie Kennea
Scott Barthelmy
Jonathan Gelbord
Michael Stroh

Event selection

Event selection

Muon background

- Restrict to northern sky
- Quality parameter to identify missreconstructed muons

X-ray follow-up with Swift

Study by Miles Smith, Qirong Zhu and Jonathan Gelbord

Intensive follow-up if source with high flux that

- Is decaying
- Is uncatalogued
- Is a brightened known sources

Automated System (Leicester University)

Swift

Relevant Swift Characteristics	
Instruments	1. BAT (γ-rays) 2. XRT (X-rays) 3. UVOT (UV/opt)
Normal operating mode	Pre-planned science timelines daily
Rapid response mode	Re-pointing in ~ 2 min (Swift triggers) or 1-4 hours (non-Swift)
Visibility	25-45 min of a 96 min orbit
Prime instrument	XRT (this program)
XRT FOV	0.4 deg
XRT energy range	0.2 - 10 keV
XRT pos error	2.4 arcsec

Swift alert: Fading source?

First observations:

- Fast fading source found
- Just below Swift threshold for intensive follow-up \rightarrow not part of analysis

Swift decision: More observations

IceCube:

- Detector stability checks
- Everything ok, but nothing extraordinary

Swift alert: Fading source?

First observations:

- Fast fading source found
- Just below Swift threshold for intensive follow-up \rightarrow not part of analysis

Swift decision: More observations

IceCube:

- Detector stability checks
- Everything ok, but nothing extraordinary

Result: More observations with Swift show slow fading/variability. Probably background AGN

Future plans: Event selection

Starting Tracks

Model expectations

Model parameters

- jet boost factor Γ
- jet energy $E_{\text {jet }}$
- density of SNe with jets ρ

Neutrino flux spectrum

- calculated according to [Ando, Beacom (PRL 95, 2005]

SN Neutrino energy spectrum

