

THE DETECTION RATE OF MERGING NEUTRON STARS / BLACK HOLES

THE DETECTION RATE OF MERGING NEUTRON STARS / BLACK HOLES

THE DETECTION RATE OF MERGING NEUTRON STARS / BLACK HOLES

Realtime Astroparticle Physics – Bonn 2013

Thomas Tauris (Bonn Uni / MPIfR)

aLIGO vs. LIGO

Detection rates

Formation of a NS-BH binary

Merger rates in the local Universe

The Bonn initiative

Gravitational wave detection

the wave amplitude is twice the relative length change

strain (amplitude):

$$h(n,e) = \left(\frac{1}{2}[h_{+,\max}^{2} + h_{\times,\max}^{2}]\right)^{1/2} = \left[\frac{16\pi G}{c^{3}\omega_{gwr}^{2}} \frac{L_{gwr}(n,e)}{4\pi d^{2}}\right]^{1/2}$$
 massive tight
= $1.0 \times 10^{-21} \frac{\sqrt{g(n,e)}}{n} \left(\frac{Mm (M+m)^{-1/3}}{M_{\odot}^{5/3}}\right) \left(\frac{P_{orb}}{1hr}\right)^{-2/3} \left(\frac{d}{1kpc}\right)^{-1}$ massive tight

scale factor

aLIGO vs LIGO

Sensitivity: 10-15x (a few hours aLIGO = 1 year LIGO obs.)

Range: 15x (NSNS merger 300 Mpc) (NSBH merger 650 Mpc) (BHBH merger 1 Gpc) Z=0.4

Event rate: 3000x

Angular resolution: ~100 sqr. deg. on sky 3 detectors LIGO/VIRGO

Predicted merger rates:

LIGO Scientific Collaboration, Virgo Collaboration

"Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors", Abadie at al. (2011)

Galactic merger rates:

TABLE II: Compact binary coalescence rates per Milky Way Equivalent Galaxy per Myr.								
Source	$R_{\rm low}$	$R_{\rm re}$	$R_{\rm high}$	$R_{\rm max}$				
NS-NS (MWEG ^{-1} Myr ^{-1})	$1 [1]^{a}$	$100 [1]^{b}$	$1000 [1]^{c}$	$4000 \ [16]^d$				
NS-BH (MWEG ^{-1} Myr ^{-1})	$0.05 [18]^{e}$	$3 [18]^{f}$	$100 [18]^{g}$					
BH-BH (MWEG ^{-1} Myr ^{-1})	$0.01 \ [14]^h$	$0.4 [14]^{i}$	$30 [14]^{j}$					
IMRI into IMBH $(GC^{-1} Gyr^{-1})$			$3 [19]^{k}$	$20 [19]^l$				
IMBH-IMBH $(GC^{-1} Gyr^{-1})$			$0.007 [20]^m$	$0.07 [20]^n$				

LIGO detection rates:

TABLE V: I	Detection rates for	compact bi	inary coal	escence so	urces.
IFO	$Source^{a}$	\dot{N}_{low}	$\dot{N}_{\rm re}$	\dot{N}_{high}	$\dot{N}_{\rm max}$
	NG NG	yr^{-2}	yr -	yr -	yr -
	NS-BH	$\frac{2 \times 10}{7 \times 10^{-5}}$	0.02	0.2	0.0
Initial	BH-BH	2×10^{-4}	0.007	0.5	
	MRI into IMBH			$< 0.001^{b}$	0.01^{c}
	IMBH-IMBH			10^{-4d}	10^{-3e}
	NS-NS	0.4	40	400	1000
\frown	NS-BH	0.2	10	300	
Advanced	BH-BH	0.4	20	1000	
	MRI into IMBH			10^{b}	300^{c}
	IMBH-IMBH			0.1^{d}	1^e

Predicted merger rates:

LIGO Scientific Collaboration, Virgo Collaboration

"Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors", Abadie at al. (2011)

Galactic NSBH merger rates:

B. NS-BH rates

TABLE VII: Estimates of NS-BH inspiral rates.									
Rate model	$R_{\rm low}$	R _{re}	$R_{\rm high}$	R _{max}					
	MWEG ⁻¹ Myr ⁻¹								
O'Shaughnessy et al. pop. synth. [18] ^a	0.05	3	100						
Voss & Tauris pop. synth. $[34]^b$	0.2	0.58	5						
Belczynski et al. pop. synth.: model A of $[35]^c$		0.07							
Belczynski et al. pop. synth.: model B of $[35]^c$		0.09							
Belczynski et al. pop. synth.: model C of $[35]^c$		3.2	/						
Nelemans pop. synth. $[36]^d$	0.2	10	500						
"Double-core" scenario: Dewi et al. $[37]^e$	0.14	6.32							

^aPredictions from constrained population-synthesis models [18]. A visual estimate of the center of the NS-BH probability distribution peak of Figure 6 is used as the value of $R_{\rm re}$; a visual estimate of the left / right edge of this peak is used as the values of $R_{\rm low}/R_{\rm high}$.

^bPredictions from the population-synthesis study of Voss & Tauris 34]. The realistic estimate is taken from model A and the plausible pessimistic / optimistic rates are based on the lowest (model D) and highest (model B) predictions from Table 7 of 34]. The values for BHNS and NSBH rates are summed. The range may significantly underestimate the true uncertainty.

^cPredictions from the population-synthesis studies of Belczynski et al. [35], which analyze the impact of assumptions about commonenvelope evolution. See section IV C for details regarding models A, B, and C. Values are taken from Table 2 of [35].

^dPredictions from population-synthesis models of Nelemans [36]. The realistic estimate is taken from the merger rate quoted in Table 1 of [36]. The plausible pessimistic and optimistic estimates are obtained, respectively, by dividing and multiplying that realistic estimate by the uncertainty factor of 50 quoted in that table.

^ePredictions for NS-BH binaries that form through the "double-core" scenario. The plausible pessimistic and realistic rates are taken to be the lowest and highest merger rates in Table 2 of Dewi et al. [37].

Formation of a NSBH binary

Merger time of a given binary (

$$\tau(a_0, e_0) \cong \frac{12}{19} \frac{C_0^4}{\beta} \int_0^{e_0} \frac{e^{29/19} [1 + (121/304)e^2]^{1181/2299}}{(1 - e^2)^{3/2}} de$$
 Peters (1964)

$$\beta = \frac{64}{5} \frac{G^3}{c^5} M^2 \mu \qquad \text{determine } C_0 \text{ from initial condition: } a=a_0, e=e_0$$

$$a(e) = \frac{C_0 e^{12/19}}{(1-e^2)} \left[1 + (121/304)e^2\right]^{870/2299}$$

Galactic formation rates

NSNS, BHNS, BHBH systems

Population synthesis (Monte Carlo simulation)

• ZAMS binary

 (M_1, q, a, e)

thermal eccentricity distribution separation (flat in log a) mass-ratio function determines secondary mass primary mass from Salpeter-like IMF $N(m) \propto m^{-\alpha}$

- Stellar evolution models (MS stars, helium stars) metallicities, rotation, wind-mass loss
- Asymmetric SN explosions (Maxwellian momentum kicks)
- + a large number of input physics parameters

Galactic star formation rate

- Contineous star formation in Galactic disk over 12 Gyr (Gilmore 2001)
- Central star formation in a burst < 1Gyr (Кеппісит 1998)
- Assume formation of one binary $M_1 > 0.8 M_{\odot} yr^{-1}$
- $\rightarrow \Theta_{BSFR} = f \cdot 0.01 \ yr^{-1}$ of a massive binary $M_1 > 10M_{\odot} \land M_2 > 4M_{\odot}$

Galactic potentials (location of merger)

- Dark matter halo + central component + disk (Flynn, Sommer-Larsen & Christensen 1996), (Miyamoto & Nagai 1975)
- Constant surface brightness $\leftrightarrow \Phi \propto \sqrt{M_{galaxy}}$
- (Binney & Tremain 1994)
- Birth place follows density distribution; at rest in local frame $v = v_{rot}$

NSBH merger-rate history of the Milky Way

Figure 14. Merger rates (relative to present merger rates) as a function of the age of our Galaxy for NSNS systems (solid line), BHNS+NSBH systems (dashed line) and BHBH systems (dotted line) for a constant Galactic star formation rate. The curves show the emergence of a 'steady state'.

Merger rates in the local Universe

Extrapolation to local Universe

aLIGO $MR \approx$ Milky Way $MR \times factor$

Scaling based on galaxy number density or B-band luminosity of galaxies:

$$(1.0-1.5) \times 10^{-2} Mpc^{-3}$$

Kalogera et al. (2001)

aLIGO:
$$d \sim 300 Mpc$$
 NSNS – merger \rightarrow factor = 1.3×10^6

aLIGO: $d \sim 1200 Mpc BHBH - merger \rightarrow factor = 8.4 \times 10^7$

aLIGO detection rates

The NSBH formation rate is extremely sensitive to a few key parameters

$$\dot{E}_{orb} = -\frac{GM_{donor}M_{NS}}{2a^2}\frac{da}{dt} = \xi(\mu)\pi R_{acc}^2\rho_{donor}v^3$$

Dissipation of E_{orb} by drag force (Bondi & Hoyle 1944)

 $E_{env} \equiv \eta \, \Delta E_{orb}$

(Dewi & Tauris 2000, 2001)

$$E_{env} = -\int_{M_{core}}^{M_{donor}} \frac{GM(r)}{r} dm + \alpha_{th} \int_{M_{core}}^{M_{donor}} U dm$$

gravitational binding energy

internal thermodynamic energy

- thermal energy
- energy of radiation
- ionization energy
- Fermi energy of e⁻-gas

Common envelope evolution

bifurcation point Tauris & Dewi (2001) Ivanova (2011)

Tauris & Dewi (2001)

Chemically Homogeneous Evolution of a 30 M_{sun} star with Z=0.002

These rotating stars remain blue and compact, and avoid RLO and mergers in close-orbit binaries

Yoon, Langer & Normann (2006)

The Bonn initiative

(Tauris, Langer, Kramer, Izzard)

- A state-of-the-art population synthesis including:
 - Rotationally induced mixing of chemical elements
 - Better constrains on CE evolution (core boundary, E_{bind} , L_{acc})
 - Electron capture SNe
 - Latest VLT-FLAMES Tarantula Survey results (binary frequency, P_{orb} distribution, mass-ratio,...)
 - Most recent wind-mass loss models (massive + WR stars)
 - Updated threshold masses for BH production in close binaries
 - Using two *independent* population synthesis codes

DFG proposal

- Predict updated detection rates of merging NSNS, NSBH and BHBH
- Expected properties of mildly recycled pulsars orbiting a BH
- Optimize radio surveys using the Effelsberg 100-m telescope
- HMXB binaries (numbers, properties, lifetimes) e-ROSITA

The Bonn initiative - cont.

Once we know the aLIGO deterction rates we can constrain our binary stellar evolution models

Examples of simulations

Tauris & van den Heuvel (2006)

Voss & Tauris (2003)

- origin of short GRBs? (e.g. Nakar 2007)

Voss & Tauris (2003)

Hope for the next decade

Detection of various signals from the same source!

Palenzuele et al. (2013) gr-qc: 1301.7074

Conclusions

- Merger rates are sensitive to a number of key parameters
- Galactic merger rate of NSNS systems is ~10 Myr⁻¹ (within a factor 10)
- aLIGO detection rate ~ 1 week⁻¹ (within a factor 10)
- Bonn initiative: a new population synthesis code with updated physics
- 2016: aLIGO detection rates \rightarrow better understanding of binary evolution

A Two Solar Mass Pulsar in a Compact Relativistic Binary

Antoniadis, Freire, Wex, Tauris, Kramer... et al., submitted

PSR J0348+0432

 $\begin{array}{l} M_{NS} = 2.01 \pm 0.04 \ M_{SUN} \\ M_{WD} = 0.172 \ M_{SUN} \\ P_{orb} = 2.46 \ hr \\ P = 39 \ ms \\ B = 2 \times 10^9 \ G \\ \tau_{cool} = 2.1 \pm 0.5 \ Gyr \end{array}$