Revealing Deaths of Massive Stars with High-Energy Neutrinos

Kohta Murase Institute for Advanced Study, USA

Realtime Astroparticle Physics February 2013

High-Energy Neutrinos

Now we have IceCube Interesting era!

Outline

Astrophysical scenarios for HE neutrinos from explosive phenomena such as GRBs and SNe

- Origin of extragalactic cosmic rays
- Physical mechanisms, GRB-SN connection etc.

- 1. Gamma-Ray Bursts
- 2. Supernovae

1. Gamma-Ray Bursts

(Long) Gamma-Ray Bursts

The most violent phenomena in the universe (L_γ~10⁵¹⁻⁵² ergs s⁻¹)
Cosmological events (z~1-3), ~1000 per year
Relativistic jet (Γ~100-1000; θ_{jet} ~ 0.1 rad)
Related to death of massive stars (association with supernovae)

"Classical" Internal-External Shock Model (Baryonic Jet Model)

Ultra-High-Energy Cosmic Rays?

Fermi shock acceleration mechanism -> not only electrons but protons are accelerated $\varepsilon_p < e r B \sim 3x10^{20} eV r_{14} B_4$ (Waxman 1995)

If UHECR energy output ~ GRB radiation energy $E_{\text{HECR}}^{\text{iso}} \sim E_{\gamma}^{\text{iso}} \sim 10^{53} \text{ erg}$

with local GRB rate density: ~ 1 Gpc⁻³ yr⁻¹ (e.g., Wanderman & Piran 2010)

UHECR budget (from obs.): Q_{HECR} ~ 10⁴⁴ erg/Mpc³/yr

Neutrino Production in the Source

at Δ -resonance ($\epsilon_p \ \epsilon_{\gamma} \sim 0.2 \ \Gamma^2 \ \text{GeV}^2$) $\epsilon_v^{\ b} \sim 0.05 \ \epsilon_p^{\ b} \sim 0.01 \ \text{GeV}^2 \ \Gamma^2 / \epsilon_{\gamma,pk} \sim 1 \ \text{PeV}$ (if $\epsilon_{\gamma,pk} \sim 1 \ \text{MeV}$) Meson production efficiency (large astrophysical uncertainty)

 $f_{pγ}$ ~ 0.2 n_γσ_{pγ} (r/Γ) ∝ r⁻¹ Γ⁻² ∝ Γ⁻⁴ δt⁻¹ (if r ~ Γ² δt)

CR Acceleration in "Classical" Pictures

Inner jet (prompt emission) $r \sim 10^{12}$ - 10^{16} cm $B \sim 10^{2-6}$ G PeV v, GeV-TeV y Waxman & Bahcall 97 PRL Inner jef (flares) r ~ 10^{14} - 10^{16} cm B ~ 10^{2-4} G PeV-EeV v, GeV-TeV γ

KM & Nagataki 06 PRL

External shock (afterglow) $r \sim 10^{16}$ - 10^{17} cm $B \sim 0.1$ -100 G EeV v, GeV-TeV γ

e.g., Waxman & Bahcall 00, Dermer 02, KM 07

Recent IceCube Limits on Prompt v Emission

1. $f_{p\gamma}$ is energy-dependent, π -cooling $\rightarrow \sim 4 \downarrow$ (Li 11 PRD, Hummer et al. 12 PRL) **2.** $(\epsilon_{\gamma}^2 \phi_{\gamma} \text{ at } \epsilon_{\gamma,pk}) \neq (\int d\epsilon_{\gamma} \epsilon_{\gamma} \phi_{\gamma}) \rightarrow \sim 3-6 \downarrow$ (Hummer et al. 12 PRL, He et al. 12 ApJ) **3. details (multi-\pi, \nu mixing etc.) \rightarrow ex., multi-\pi \sim 2-3 \uparrow (KM & Nagataki 06 PRD)**

- In addition, there is "astrophysical" model-uncertainty in calculating f_{py}

Recent IceCube Limits on Prompt v Emission

~10 yr observations by IceCube can cover reasonable parameter space required for the GRB-UHECR scenario

Problems in Internal-Shock-Synchrotron Scenario

Fermi collaboration 10 ApJ

Band function ~ broken power-law $\mathbf{F}_{\mathbf{v}} \propto \mathbf{v}^{\beta+1}$

"synchrotron scenario"

$$\boldsymbol{\mathcal{E}}_{\boldsymbol{\gamma},\mathrm{pk}} = \Gamma \hbar \gamma_{ei}^2 \frac{eB}{m_e c}$$

 $2+\alpha \sim 0.5$ (fast-cooling)

Other problems

- high radiative efficiency
- empirical relations ($\epsilon_{v,pk}$ -L_v)
- theoretical issues

Dissipative Photosphere Scenario

e.g., Thompson 1994, Meszaros & Rees 2000, Rees & Meszaros 2005, Peer et al. 2006, Giannios 2006, Ioka, KM et al. 2007, Beloborodov 2010

Emissions from τ_τ~1-10 "dissipative photosphere"

- internal shocks
- interaction with star or wind
- recollimation shocks
- magnetic reconnection
- collisions with neutrons

•Re-conversion of kinetic energy to radiation energy •High radiative efficiency & stabilization of $\varepsilon_{\gamma,pk}$ **Observational Hints**

Photospheric Neutrinos

• Dissipative photosphere (e.g., Rees & Meszaros 05 ApJ) $\tau_T = n_e \sigma_T (r/\Gamma) \sim 1-10 \Leftrightarrow f_{pp} = (\kappa_{pp} \sigma_{pp} / \sigma_T) \tau_T \sim 0.05-0.5$

Detection of pp neutrinos strongly supports dissipative photospheres

Quasi-Thermal Neutrinos?

We have assumed ϵ_p^{-2} spectrum w. $E_{CR}^{iso} \sim E_{\gamma}^{iso}$ But highly uncertain....

- pγ is unimportant (pp is more important) if steeper
- non-thermal component may be absent

Q. Can we expect "thermal" neutrinos? A. Yes! (Paczynski & Xu 1994, Bahcall & Meszaros 2000, Meszaros & Rees 2000) inevitable when neutrons are loaded in jets

(But uncertain if not, since thermal protons would not cause inelastic collisions for radiation-mediated shocks)

Collisional Dissipation by Neutrons

- "Quasi-thermal" $\epsilon_{v} \sim 100 \text{ GeV} (\Gamma/500) (\Gamma_{rel}/2)$
- $\gamma s \& vs$ come from ps $\epsilon_v^2 \phi_v \sim \epsilon_{\gamma}^2 \phi_{\gamma}$ (normalizable)

KM, Kashiyama & Meszaros 13, Bartos et al. 13

Prospects for DeepCore+IceCube

- Including DeepCore is essential at 10-100 GeV
- Reducing atmospheric v background is essential
 → select only bright GRBs w. > 10⁻⁶ erg cm⁻²

Summary: Testable Cases for GRB Neutrinos

vs in GRB-UHECR hypothesis

- Prompt vs: PeV
 - ~10 yr to cover parameter space in classical scenario
 - maybe difficult in magnetic scenarios
- Afterglow cases are allowed (\rightarrow Askaryan Radio Array)

Prompt vs in dissipative photosphere scenario

- Different predictions (GeV-TeV from pp, suppression at > PeV)
- Consistent w. non-observations by IceCube
- Better things
 - pp(or pn)/p γ efficiencies are fixed by τ_T ~1-10
 - inevitable quasi-thermal νs in pn collisional dissipation

 \rightarrow searches w. DeepCore, improving ang. resolution for cascades

TeV Neutrinos from Choked Jets

Razzaque et al. 2005

Jet penetration?
 GRBs=successful jets
 failed GRBs=SNe w. choked jets

(Meszaros & Waxman 01 PRL)

Slow jets embedded in SNe? Some SNe may be driven by a slow jet (Razzaque et al. 04 PRL,

Ando & Beacom 05 PRL, Horiuchi & Ando 08 PRD)

If CRs carry E_{CR}^{iso} ~0.5x10⁵³ erg (GRB) \rightarrow # of μ s ~30 for SN@10Mpc Neutrinos from such SNe are interesting if detected (neutrino tomography, neutrino mixing etc.)

But can we expect CR acceleration deep inside stars?

Limitation of Shock Acceleration

upstream

downstream

downstream

upstream

Shock Breakout & Collisionless Shocks

- Necessary condition for collisionless shocks $| < |_{dec} \sim (1/n \sigma_T \beta) \Leftrightarrow \tau_T < 1/\beta$ (not sufficient condition: ex. steep density profile) (Waxman & Loeb 01 PRL, KM et al. 11 PRD, Katz, Sapir & Waxman 11)
- Shock breakout: $t_{diff} \sim t_{dyn} \Leftrightarrow \tau_T \sim 1/\beta$ $t_{diff} \sim l^2/\kappa (\kappa \sim (c/n \sigma_T))$ $t_{dyn} \sim l/\beta c$ wind CSM $\rightarrow r_{bo} \sim l_{bo} \sim (1/n \sigma_T \beta)$ (unless ultra-relativistic)
- Ex. int./rev. shock at r=10⁹ cm in choked jets (L_k =10⁴⁸ erg/s, Γ =10) $\rightarrow \tau_T \sim 10^3$, CR acc. is difficult (see also Levinson & Bromberg 08 PRL)

Possibility: Quasi-Thermal Neutrinos

KM, Kashiyama & Meszaros 13

• pn collisions in LL GRBs \rightarrow possible detections up to <~ 3 Mpc

Possibility: Non-Shock Acceleration?

- Magnetar-UHECR hypothesis UHECR acc. may occur in wind in ~hrs after the birth (Arons 03 ApJ)
- Accelerated CRs should interact with stellar material and rad. field
 - \rightarrow pp/p γ reactions
 - $\rightarrow \nu s$ should be produced
- Escape of UHECRs?
 ex. puncturing envelope by jets

Neutrinos from Fast-Rotating Magnetars

KM, Meszaros, & Zhang, PRD, 79, 103001 (2009)

Magnetar-UHECR hypothesis can be tested by IceCube

Possibility: Post-Shock-Breakout?

Expect formation of collisionless shocks & CRs

pp cooling:
$$t_{pp} = 1/(n \kappa_{pp} \sigma_{pp} c)$$

dynamical: $t_{dyn} = I/\beta c$
 $\rightarrow f_{pp} = (I/\beta) n \kappa_{pp} \sigma_{pp}$

 $f_{pp}(r_{bo}) \sim \beta^{-2} (\kappa_{pp} \sigma_{pp} / \sigma_T) \sim 0.03 \beta^{-2}$

 β ~ 1 ⇔ trans-relativistic SNe (pγ efficiency ~ 1: dominant)
 β ~ 0.01-0.03 ⇔ typical SN velocity pp efficiency ~ 1

Trans-Relativistic SNe (Low-Luminosity GRBs)

Nearby GRBs (ex. 060218@140Mpc, 980425@40Mpc) may form another class

- much dimmer ($E_{LL\gamma}^{iso} \sim 10^{50} \text{ erg} \Leftrightarrow E_{GRB\gamma}^{iso} \sim 10^{53} \text{ erg/s}$)
- more frequent (ρ_{LL} ~10²⁻³ Gpc⁻³ yr⁻¹ ⇔ ρ_{GRB} ~0.05-1 Gpc⁻³ yr⁻¹)
- relativistic ejecta (the other GRB-SNe + 2009bb) (Soderberg+ 10 Nature)
- more baryon-rich? (e.g., Zhang & Yan 11 ApJ), relevant for UHECRs? (KM et al. 06 ApJ)

Two Competing Scenarios

 Inner jet dissipation (similar to GRBs)

(Toma et al. 07 ApJ, Fan et al. 10 ApJL)

Shock breakout from optically-thick wind

(Waxman et al. 07 ApJ, Nakar & Sari 12 ApJ)

The signal is detectable for nearby SNe at D < 10 Mpc

SNe IIn & Super-Luminous SNe

Circumstellar-Material-Collision Scenario

From SNe IIn to Luminous SNe

 τ_T >> 1 collision → luminous SNe strong thermalization (optical, infrared) ex. SN 2006gy R ~ 3x10¹⁵ cm, V ~ 5000 km/s n_{CSM} ~ 3x10¹⁰ cm⁻³ (M_{CSM} ~ 10 M_{sun}) characteristic timescale: t_{bo} ~ t_{diff} ~ t_{dyn} ~ 60 day

• $\tau_T < 1 \text{ collision} \rightarrow \text{SNe IIn}$ weaker thermalization (optical + x rays, radio) ex. SN 2006jd $R \sim 3x10^{16}$ cm, V ~ 5000 km/s $n_{CSM} \sim 3x10^6$ cm⁻³ ($M_{CSM} \sim 1 M_{sun}$) characteristic timescale: $t_{dyn} \sim 2$ yr

Neutrinos from SNe Colliding with Massive CSM

Summary: SN Neutrinos

- Shock acc. may occur after $\tau_T \sim c/V \rightarrow TeV-PeV vs$ (vs from slow jets are unlikely since $\tau_T >> 1$)
- Possible non-shock acc. in magnetars \rightarrow **PeV-EeV** vs
- Detectable typically up to < ~10 Mpc
- Timescales longer than GRBs \rightarrow fight w. atm. $\nu s\ldots$
 - trans-relativistic SNe (~ hr)
 - magnetar-driven SNe (~ day)
 - SN colliding with CSM (~ month-to-year)
 - \rightarrow counterparts in opt./IR (+ x rays, radio and γ rays)
 - \rightarrow probes of emission mechanisms, mass loss, progenitors and GRB-SN connection

Various Predictions for Neutrino Background

Backup Slides

GRB Early Afterglow Emission

 Most vs are radiated in ~0.1-1 hr (physically max[T, T_{dec}]) Afterglows are typically explained by external shock scenario •But flares and early afterglows may come from internal dissipation

Flares – efficient meson production ($f_{p\gamma} \sim 1-10$), maybe detectable External shock – not easy to detect both vs and hadronic γ rays

Basics of Neutrino Emission

