

RF system for LEP3 and TLEP

Andy Butterworth (CERN BE/RF)

Thanks to E. Ciapala, R. Calaga, E. Montesinos, O. Brunner, P. Baudrenghien, S. Claudet

- Introduction and general considerations
 - A bit of history: the LEP2 RF system
 - Cryogenic cooling capacity
- Technology choices: which is the best fit for a 120 GeV e⁺e⁻ storage ring?
 - Producing the voltage
 - Handling the RF power
 - Damping higher order modes
 - Controlling the impedance: Low Level RF
- Tentative conclusions

LEP2 SC RF system

Circumference	26.7 km
Beam energy	104.5 GeV
Energy loss per turn	3.4 GeV
Beam current	5 mA
Synchrotron radiation power	17 MW
Available cooling power	53 kW @ 4.5K

RFAI

RF frequency	352 MHz
Number of cavities *	288
Total accelerating voltage *	3500 MV
Number of klystrons *	36
Total cryomodule length	812 m
Cavities per klystron	8
Average (nom.) power per klystron	0.6 (1.3) MW
Average power per cavity	90 kW

* Plus 56 copper cavities (130 MV) driven by 8 klystrons

LEP2 SC RF system

Circumference	26.7 km
Beam energy	104.5 GeV
Energy loss per turn	3.4 GeV
Beam current	5 mA
Synchrotron radiation power	17 MW
Available cooling power	53 kW @ 4.5K

RF frequency	352 MHz
Number of cavities *	288
Total accelerating voltage *	3500 MV
Number of klystrons *	36
Total cryomodule length	812 m
Cavities per klystron	8
Average (nom.) power per klystron	0.6 (1.3) MW
Average power per cavity	90 kW

* Plus 56 copper cavities (130 MV) driven by 8 klystrons

The RF system of an e⁺e⁻ collider has to:

- replace the energy lost U₀ at each turn by synchrotron radiation
 - total power needed by the beam = $U_0 \times I_{beam}$

$$P_{SR} = \frac{ec}{6\pi\varepsilon_0} \begin{pmatrix} \gamma^4 \\ \rho^2 \end{pmatrix} \cdot \frac{I_b}{f_{rev}} \qquad \sim \frac{\gamma^4}{R} Ib$$

- maintain longitudinal focusing with sufficient momentum acceptance $|\delta|_{\max, \rm RF}$ to keep a good beam lifetime, given
 - the equilibrium energy spread due to quantum excitation/radiation damping (quantum lifetime)
 - the energy spread (tail) due to beamstrahlung

RF voltage

- Quantum lifetime is a very steep function of V_{RF}
- RF voltage is defined by the momentum acceptance needed to cope with beamstrahlung
 - 4% for LEP3
 - 3% for TLEP-H

Machine	RF frequency [MHz]	V _{RF} [0 for τ _q = 1	GV] 100h	V_{RF} [GV] for $\delta_{max,RF}$ = 4%
LEP3	352	7.4		8.8
	704	7.7		10.0
	1300	8.1		11.7
				Ť
			δ _{max,RF} given F	~ f _{RF} ^{-1/2} for a RF voltage

Parameters: LEP3 (27 km ring) and TLEP (80 km ring)

	LEP2	LEP3	TLEP-Z	TLEP-H	TLEP-t
beam energy E _b [GeV]	104.5	120	45.5	120	175
circumference [km]	26.7	26.7	80	80	80
beam current [mA]	4	7.2	1180	24.3	5.4
#bunches/beam	4	4	2625	80	12
#e⁻/beam [10¹²]	2.3	4	2000	40.5	9
bending radius [km]	3.1	2.6	9	9	9
partition number J_{ϵ}	1.1	1.5	1	1	1
momentum comp. α_{a} [10 ⁻⁵]	18.5	8.1	9	1	1
SR power/beam [MW]	11	50	50	50	50
٨F ^{SR} (turn [GeV]	3 41	6 99	0.04	21	93
V _{RF.tot} [GV]	3.64	12	2	6	12
δ _{max,RF} [%]	0.77	4.2	4	9.4	4.9
f _s [kHz]	1.6	3.91	1.29	0.44	0.43
E _{acc} [MV/m]	7.5	20	20	20	20
eff. RF length [m]	485	600	100	300	600
f _{RF} [MHz]	352	1300	700	700	700
δ ^{SR} _{rms} [%]	0.22	0.23	0.06	0.15	0.22
σ ^{sR} _{z.rms} [cm]	1.61	0.23	0.19	0.17	0.25

RF: General considerations for LEP3 and TLEP-H

	LEP3	TLEP-H	Top-up injector rings
RF voltage	12 GV ($\delta_{max,RF}$ = 4.2%) needed for beamstrahlung	6 GV ($\delta_{max,RF}$ = 5.7%) needed for beamstrahlung	LEP3: 9 GV TLEP-H: 2.5 GV for quantum lifetime
Gradient	 High (≥ 20 MV/m?) Overall length of the RF sections, available space in the LHC tunnel. Tradeoff with cryogenic power. 	Moderate, as the space constraints are less important, required RF voltage is lower. Defined by beam power considerations.	High, to keep the RF sections short (cost, space). Cryogenic power less critical (low duty cycle)
RF power	High power throughput per cavity to supply the required 100 MW of SR power.	The same 100 MW total power throughput. Maximum power rating of the input couplers dictates the number of cavities and gradient.	<pre>SR power low (kW per cavity) due to low beam currents.</pre> Power dominated by acceleration during energy ramp.

- RF frequency:
 - higher is better, for short bunch length (hourglass effect)
- Higher order mode power:
 - cavity loss factors, bunch length, bunch charge, beam current
 - power limits of HOM damping
 - bunch break-up from transverse modes
- RF power sources:
 - klystrons, IOTs, solid state amplifiers?
 - available power, efficiency, cost
- Feedbacks and Low-Level RF:
 - beamloading (especially if no top-off injection)
 - longitudinal impedance control (coupled bunch modes)

• For LEP3 it would be very advantageous if the cryogenic power required for the RF could be supplied by the existing LHC cryogenics plants

Installed refrigera	ation capao	city in the LHC	Sectors
Temperature level		High-load sector (1-2, 4-5, 5-6, 8-1)	Low-load sector (2-3, 3-4, 6-7, 7-8)
50-75 K	[W]	33000	31000
4.6-20 К	[W]	7700	7600
4.5 K	[W]	300	150
1.9 K LHe	[W]	2400	2100
4 K VLP	[W]	430	380
20-280 K	[g.s-1]	41	27

- LHC cold compressors (125 g/s@15mbar (250g/s@30mbar=2.0K)
- However, piping, motors and so on woul
- A more detailed study would be necessa some parts would be changed (motors, k

Total wall-plug power for LHC cryogenics = 40 MW

CERN

Gradient and dynamic heat load

LEP3/TLEP RF: Potential options

ILC collaboration

1300 MHz 9-cell cavity

Standard ILC cryomodule

ESS, eRHIC, SPL

SPL type cryomodule

704 MHz 5-cell cavity

• ILC cavity performance requirements:

	Gradient	Q ₀
Vertical test (bare cavity)	35 MV/m	> 0.8 x 10 ¹⁰
Mounted in cryomodule	31.5 MV/m	> 1.0 x 10 ¹⁰

- Promise of even higher cavity performance in future
 - ongoing R&D in new techniques
 - e.g. large grain and single crystal niobium cavities

Option 1: 1.3 GHz (LEP3)

LEP3	1300 MHz 9-cell				Collider ring	Accel. ring
Gradient [MV/m]	20	25		V _{RF} [GV]	12	9
Active length [m]	1.038	1.038		P _{SR} [MW]	100	1
Voltage/cavity [MV]	20.76	25.95				
Number of cavities	579	463				
Total cryomodule length [m]	927	737	$\mathbf{\mathcal{I}}$	cf. LEP2: 81	2 m	
R/Q [linac ohms]	1036	1036				
Q ₀ [10 ¹⁰]	1.5	1.3				
Heat load per cavity [W]	27.7	50.0				
Total heat load [kW]	<u>16 1</u>	23 2				
Heat load per sector [kW]	2.0	2.9	>	cf. LHC cryo	plant capa LkW per si	city @ 1.9K ector
Accel. ring @ 10% DF [kW]	0.15	0.22				
RF power per cavity [kW]	173	216	>	Input power can handle t	r couplers these CW	which power
Matched Q _{ext}	2.4E+06	3.0E+06		levels?		

1.3 GHz power couplers

- TTF-III couplers tested to 5 kW in CW
 - 8kW with improved cooling (BESSY)
- Some higher power adaptations for ERL injectors
 - e.g. Cornell 60 kW CW

Cornell ERL Injector Coupler

2 couplers per 2-cell cavity in ERL injector cryomodule Gradient: 5-15MV/m Beam current: 100 mA

V. Vescherevitch, ERL'09

Developing a power coupler for 1.3 GHz high gradient and 200 kW CW looks challenging...

Option 2: 704 MHz eRHIC/SPL

- SPL/ESS design value
 2.0 x 10¹⁰ @ 20MV/m
- JLab 748 MHz Cavity Test for highcurrent cryomodule

- First cavities, lots of room for improvement
- Measurement after only BCP surface treatment (no EP cf. TESLA cavities)

Option 2: 704 MHz (LEP3)

LEP3	704 MHz 5-cell
Gradient [MV/m]	20
Active length [m]	1.06
Voltage/cavity [MV]	21.2
Number of cavities	567
Total cryomodule length [m]	902
R/Q [linac ohms]	506 2 0
Heat load per cavity [W]	44.4
Total heat load [kW]	25.2
Heat load per sector [kW]	3.1
Accel. ring @ 10% DF [kW]	0.24
RF power per cavity [kW]	176
Matched Q _{ext}	5.0E+06

	Collider ring	Accel. ring
V _{RF} [GV]	12	9
P _{SR} [MW]	100	1

cf. LEP2: 812 m

higher heat load despite higher Q₀ because of lower R/Q cf. LHC cryoplant capacity @ 1.9K of **2.4** or **2.1** kW per sector

Input power couplers at 704 MHz for these power levels?

704 MHz power couplers

- CEA Saclay HIPPI water cooled coupler (SPL/ESS)
 - tested up to 1.2 MW 10% duty cycle in travelling wave, and 1 MW in standing wave

- CERN SPL air-cooled single window coupler
 - 2 designs currently under test: cylindrical and planar disk windows
 - design goal: 1 MW 10% duty cycle for SPL
 - cylindrical window design uses LHC coupler ceramic window with tapered outer conductor
 - LHC windows are routinely tested to > 500 kW CW

Latest R&D results High average power air cooled couplers (CERN BE-RF-PM)

- Cylindrical window :
 - TW : 1000 kW 2 ms 20 Hz
 - SW : 550 kW 500 us 8 Hz

40 kW average power

Limited by arcing on air side of window

→ Improvements in window air flow and screen at braze

- Coaxial disk window :
 - TW : 1000 kW 2 ms 20 Hz
 - SW : 1000 kW 1.5 ms 20 Hz

40 kW average power

Limited by losses in uncoated outer double walled tube

→ Improvements in coating

TLEP-H

TLEP-H	1300 MHz 9-cell		704 MHz 5-cell			Collider ring	Accel. ring
Gradient [MV/m]	20	25	20	·	V _{RF} [GV]	6	2.5
Active length [m]	1.038	1.038	1.06		P _{sr} [MW]	100	1
Voltage/cavity [MV]	20.76	25.95	21.2				
Number of cavities	290	232	284				
Total cryomodule length [m]	470	368	457	>	cf. LEP2: 81	2 m	
R/Q [linac ohms]	1036	1036	506		• Limited	by power	per
Q ₀ [10 ¹⁰]	1.5	1.3	2.0		Cavity	wice the #	cavities
Heat load per cavity [W]	27.7	50.0	44.4		with ha	If the grad	lient?
Total heat load [kW]	8.0	11.6	12.6		L		
Heat load per sector [kW]	1.01	1.45	1.58)		
Accel. ring @ 10% DF [kW]	0.04	0.06	0.07				
RF power per cavity [kW]	344.8	431.0	352.1	>	Very hig	h power le	evels!
Matched Q _{ext}	1.2E+06	1.5E+06	2.5E+06	-)	

Parameters: LEP3 (27 km ring) and TLEP (80 km ring)

	LEP2	LEP3	TLEP-Z	TLEP-H	TLEP-t
beam energy E _b [GeV]	104.5	120	45.5	120	175
circumference [km]	26.7	26.7	80	80	80
beam current [mA]	4	7.2	1180	24.3	5.4
#bunches/beam	4	4	2625	80	12
#e⁻/beam [10 ¹²]	2.3	4	2000	40.5	9
bending radius [km]	3.1	2.6	9	9	9
partition number J_{ϵ}	1.1	1.5	1	1	1
momentum comp. α _c [10 ⁻⁵]	18.5	8.1	9	1	1
SR power/beam [MW]	11	50	50	50	50
ΔE ^{sr} _{loss} /turn [GeV]	3.41	6.99	0.04	2.1	9.3
V _{RF,tot} [GV]	3.64	12	2	6	12
δ _{max,RF} [%]	0.77	4.2	4	9.4	4.9
f _s [kHz]	1.6	3.91	1.29	0.44	0.43
E _{acc} [MV/m]	7.5	20	20	20	20
eff. RF length [m]	485	600	100	300	600
f _{RF} [MHz]	352	1300	700	700	700
δ ^{sR} rms [%]	0.22	0.23	0.06	0.15	0.22
σ ^{sR} _{z.rms} [cm]	1.61	0.23	0.19	0.17	0.25

Top-up injector rings

- SR power very small
 - (beam current ~ 1% of collider ring)
- Average cryogenic heat load very small
 - (duty cycle < 10%)</p>
- Power is dominated by ramp acceleration:
 - for a 1.6 second ramp length:

	LEP3	TLEP-H	TLEP-t
Beam current [mA]	0.14	0.48	0.054
Energy swing [GeV]	100	100	155
Max. SR power/cavity [kW]	6.2	8.5	6.2
Acceleration power [kW]	32	100	18
Max. power per cavity [kW]	38	109	24

Well within our 200 kW budget

Higher order mode power

• HOM powers in the kW range to remove from the cavity at 2K

HOM power "league table"

	Beam	Average HOM
Project	current [mA]	power per cavity [W]
CEBAF 12GeV	0.10	0.05
Project X	1	0.06
XFEL	5	1
SPL	40	22
APS SPX	100	2,000
BERLinPro	100	150
KEK-CERL	100	185
Cornell ERL	100	200
eRHIC	300	7,500
КЕКВ	1,400	15,000
LEP3 704 M	Hz 14	6,100
TLEP-H 704 M	Hz 49	10,400
LEP3 1.3 GH	z 14	18,800
TI FP-H 1 3 GH	7 49	32 100

KEKB SC cavity HOM dampers

HOM power: 16 kW/cavity

sides (outside cryostat)

Y. Morita et al., IPAC10, Kyoto

Absorbed power (kW)

HOM power "league table"

	Α	/erage	
	Beam Ho	OM	
_	current po	ower per	
Project	[mA] ca	vity [W]	
CEBAF 12GeV	0.10	0.05	
Project X	1	0.06	
XFEL	5	1	
SPL	40	22	
APS SPX	100	2,000	
BERLinPro	100	150	
KEK-CERL	100	185	
Cornell ERL	100	200	
eRHIC	300	7,500	$\mathbf{>}$
КЕКВ	1,400	15,000	
LEP3 704 M	Hz 14	6,100	
TLEP-H 704 M	Hz 49	10,400	
LEP3 1.3 GH	z 14	18,800	
	7 /0	22 100	

eRHIC /SPL/ESS 704 MHz cavities

- BNL3 cavity optimized for high-current applications such as eRHIC and SPL.
- Three antenna-type HOM couplers attached to large diameter beam pipes at each end of the cavity provide strong damping
- A two-stage high-pass filter rejects fundamental frequency, allows propagation of HOMs toward an RF load.

HOM power "league table"

	Beam current	Average HOM power per
Project	[mA]	cavity [W]
CEBAF 12GeV	0.10	0.05
Project X	1	0.06
XFEL	5	1
SPL	40	22
APS SPX	100	2,000
BERLinPro	100	150
KEK-CERL	100	185
Cornell ERL	100	200
eRHIC	300	7,500
КЕКВ	1,400	15,000
LEP3 704 M	Hz 14	6,100
TLEP-H 704 M	Hz 49	10,400
LEP3 1.3 GH	z 14	18,800
TLEP-H 1.3 GH	lz 49	32.100

due to higher beam intensity.

RF power sources

- "Super-power" klystrons at 700 MHz
- Multiple cavities per klystron as in LEP2
- Could perhaps use IOTs (inductive output tubes) or solid state amplifiers for the injector ring (lower power required)

THALES

Туре	Frequency (MHz)	Output Power (kW)	Efficiency (%)
TH2178	508.6	1200	62

LLRF: instabilities and feedbacks

- LEP2:
 - slow scalar sum feedback acting on the klystron modulation anode, with the klystrons operated at saturation for maximum efficiency
- Fast RF feedback may be desirable
 - especially for TLEP where f_{rev} is lower, detuning may drive coupled bunch modes
- Beamloading: "second Robinson" instability
 - loss of longitudinal focusing due to large detune angle under strong beamloading
 - occurs at low RF voltage with high beam current
 - seen in LEP2 at injection energy
 - cured by using fast RF feedback on a few RF stations
 - an issue if we don't have top-up injection

Tentative conclusions

- We cannot use ILC technology "off the shelf"
 - power coupler limitations
 - loss factors and HOM damping
- Backing off in frequency to 700 MHz seems preferable
 - ongoing R&D at BNL, CERN, ESS for 704 MHz cavities and components
 - fundamental power couplers look feasible at > 200 kW CW
 - compatible with HOM damping scheme for eRHIC
 - high-power klystrons available
- Cryogenic power will probably fit into the envelope of the existing LHC cryoplants (for LEP3)
- Open questions
 - power coupler design
 - HOM damping (especially for TLEP)
 - low level RF & feedback requirements

An RF system for a circular Higgs factory such as LEP3 or TLEP is not without its challenges but appears to be very feasible, especially as there are strong synergies with other ongoing development projects.

Thank you for your attention!

• SPS 800 MHz TWC prototype feedback board

G. Hagmann BE-RF-FB designer

The Carnot Factor (2/3)

Workshop Energy for sustainable science, ESS Lund, Oct'2011 11/38 LHC Cryogenics, optimisation of energy consumption