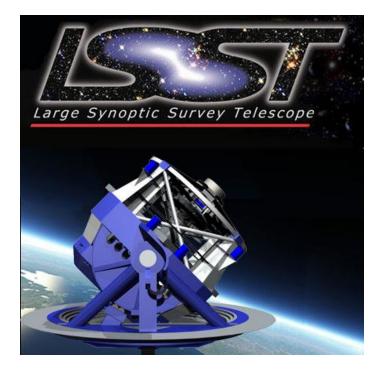


LSST Database

Jacek Becla

Jacek Becla, XLDB-Europe , CERN, May 2013

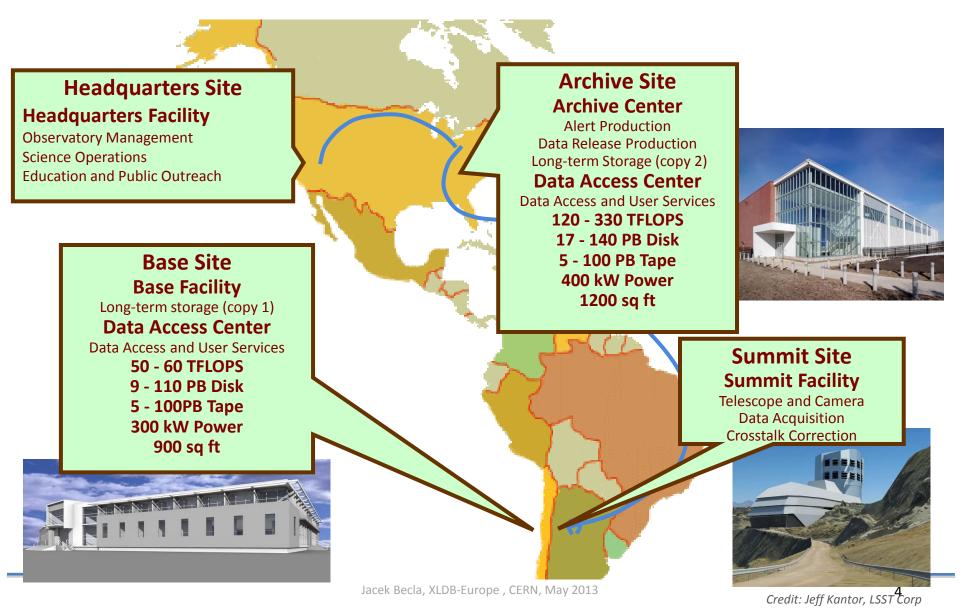
T

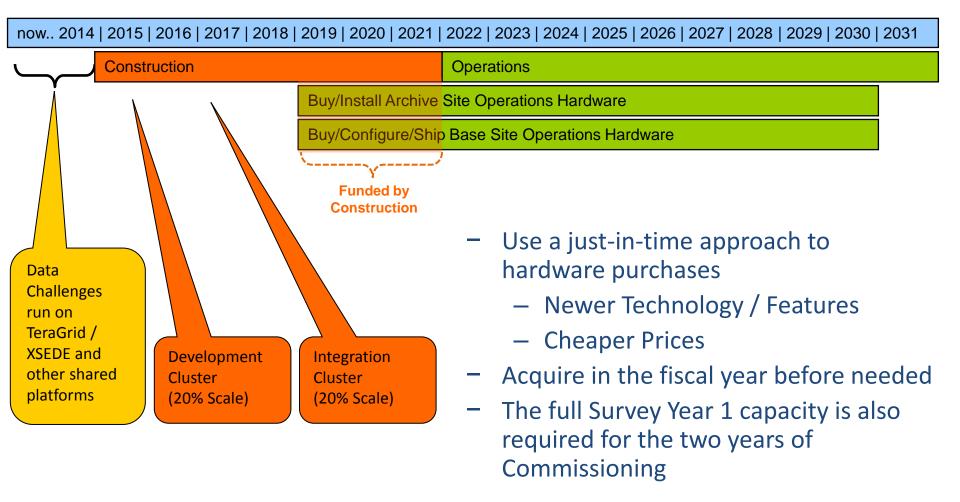

扣

1000

- Timeline
 - In R&D now, data challenges
 - Construction starts ~mid 2014
 - Operations: 2022-2031
- Scale
 - ~45 PB database^{*}
 - ~65 PB images^{*}
 - Plus virtual data
- Complexity
 - Time series (order)
 - Spatial correlations (adjacency)

* Compressed, single copy, includes db indexes


- A new telescope to be located on Cerro Pachon in Chile
 - 8.4m dia. mirror, 10 sq. degrees FOV
 - 3.2 GPixel camera, 6 filters
 - Image available sky every 3 days
 - Sensitivity per "visit": 24.5 mag; survey: 27.5 mag
- Science Mission: observe the time-varying sky
 - Dark Energy and the accelerating universe
 - Comprehensive census Solar System objects
 - Study optical transients
 - Galactic Map
- Named top priority among large ground-based initiatives by NSF Astronomy Decadal Survey

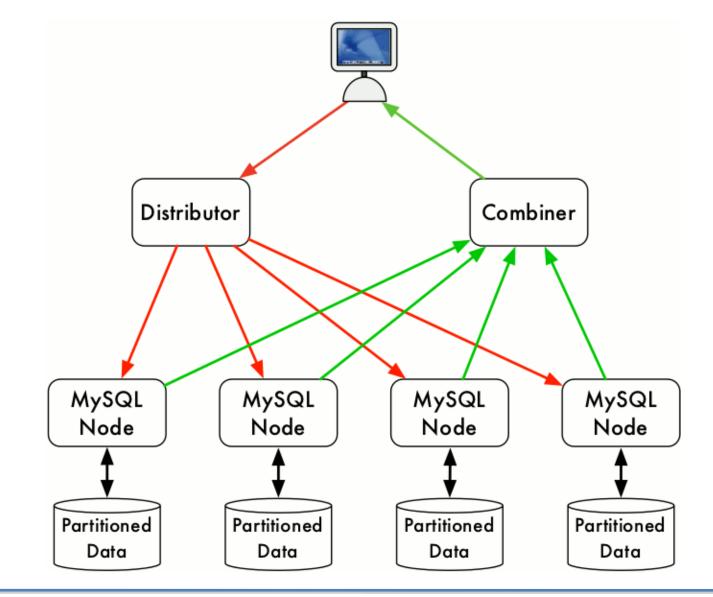

LSST Data Centers

- Images
 - Raw
 - Template
 - Difference
 - Calibrated science exposures
 - Templates

- Catalogs
 - Object
 - MovingObject
 - DiaSource
 - Source
 - ForcedSource
 - Metadata

٠

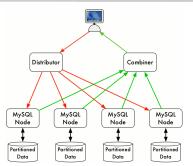
Table name	# columns	# rows
Object	500	4x10 ¹⁰
Source	100	5x10 ¹²
ForcedSource	10	3x10 ¹³


- MPP* RDBMS on shared-nothing commodity cluster, with incremental scaling, non-disruptive failure recovery
- Data clustered spatially and by time, partitioned w/overlaps
 - Two-level partitioning
 - 2nd level materialized on-the-fly
 - Transparent to end-users
- Selective indices to speed up interactive queries, spatial searches, joins including time series analysis
- Shared scans
- Custom software based on open source RDBMS (MySQL) + xrootd

*MPP – Massively Parallel Processing

Baseline Architecture

- Data volume (massively parallel, distributed system)
 - Correlations on multi-billion-row tables
 - Scans through petabytes
 - Multi-billion to multi-trillion table joins
- Access patterns
 - Interactive queries (indices)
 - Concurrent scans/aggregations/joins (shared scans)
- Query complexity
 - Spatial correlations (2-level partitioning w/overlap, indices)
 - Time series (efficient joins)
 - Unpredictable, ad-hoc analysis (shared scans)
- Multi-decade data lifetime (robust schema and catalog)
- Low-cost (commodity hardware, ideally open source)

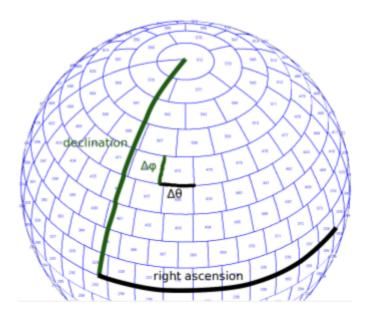


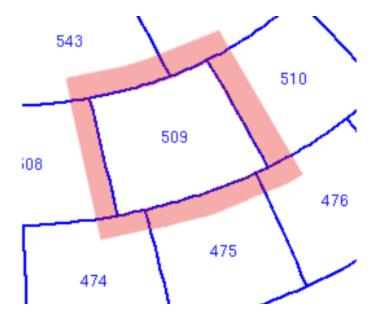
- ~65 "standard" questions to represent likely data access patterns and to "stress" the database
 - Based on inputs from SDSS,
 LSST Science Council,
 Science Collaboration
- Sizing and building for ~50
 interactive and ~20 complex
 simultaneous queries
 - Interactive @<10sec</p>
 - Object-based @<1h
 - Source-based @<24h
 - ForcedSource-based @<1 week

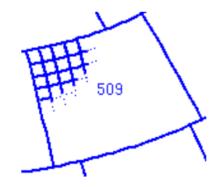
- In a region
 - Cone-magnitude-color search
 - For a specified patch of sky, give me the source count density of unresolved sources (star like PSF)
- Across entire sky
 - Select all variable objects of a specific type
 - Return info about extremely red objects
- Analysis of objects close to other objects
 - Find all galaxies without saturated pixels within certain distance of a given point
 - Find and store near-neighbor objects in a given region
- Analysis that require special grouping
 - Find all galaxies in dense regions
- Time series analysis
 - Find all objects that are varying with the same pattern as a given object, possibly at different times
 - Find stars that with light curves like a simulated one
- · Cross match with external catalogs
 - Joining LSST main catalogs with other catalogs (cross match and anti-cross match)

- Map/Reduce
 - Incremental scaling, fault tolerance, free
 - Indices, joins, schema and catalog, speed

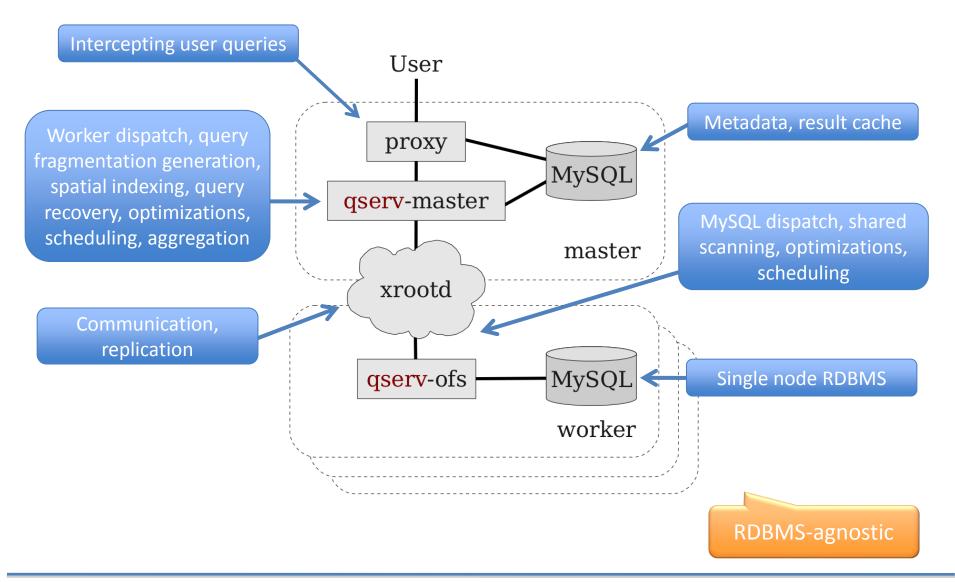
- Catching up (Hive, HBase, HadoopDB, Dremel, Tenzing)
- LSST Baseline
 - Xrootd: scalable, fault tolerance, in production, free
 - MySQL: fast, in prod., good support, big community, free
 - Custom software, including unique features: overlap partitioning, shared scans


Many technologies considered


Many tests run to fine-tune and uncover bottlenecks



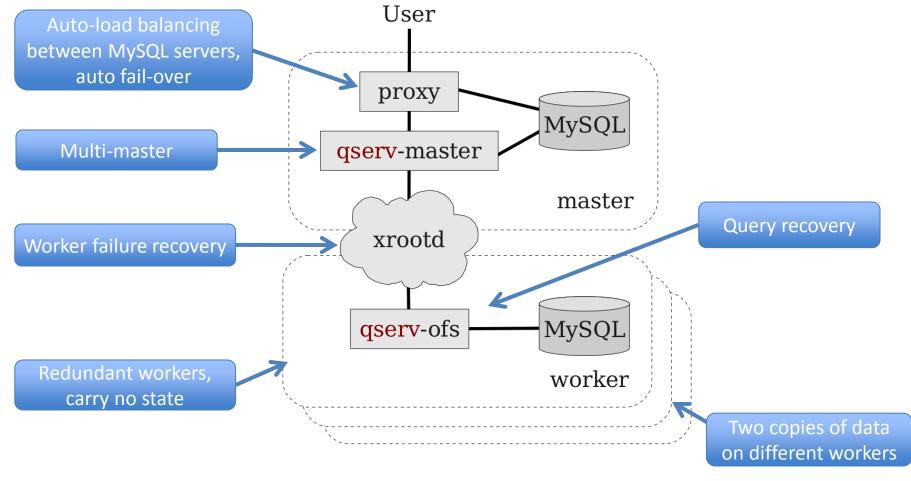
Partitioning



- Nodes addressed by chunk #
- Spatial index
 - Ra-dec spec of box, ellipse, polygon, circle, ...
 - Htm index
- ObjectId index
 - map objectId to chunk #
- Library of UDFs (see scisql on launchpad).
 Spatial geometry and more

Prototype Implementation - Qserv

- Write


- xroot://qsm@mgr:1094//query2/7505
- Result read
 - xroot://qsm@182.23.36.70:1094//result/<hash>

- Components replicated
- Failures isolated

- Narrow interfaces
- Logic for handling errors
- Logic for recovering from errors

- Working: parsing, query dispatch, 2-level partitioning, data partitioner, data loader, metadata, automated installation, ...
- Tested in various configurations, including:
 - 150 nodes / 30 TB / 2B objects / 55 b sources
 - 20 nodes / 100 TB
- Working on: shared scans, query retry on failure,
 300 node test, rewriting xrootd client
- Next: user table support, authentication, many others...
- Usable, stable, ~beta
- Far from production!

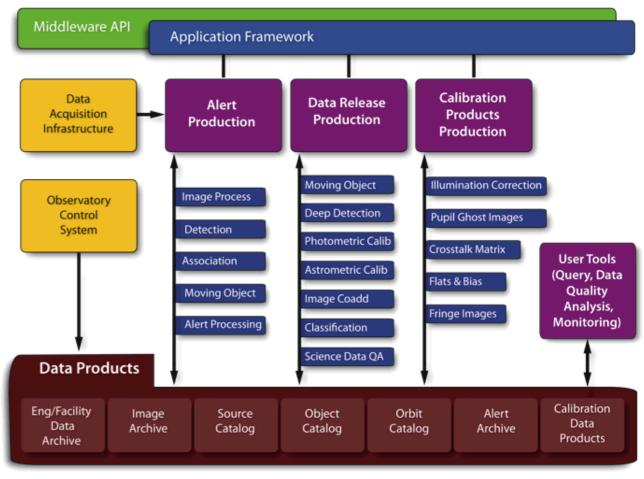
- SciDB inspired by the needs of LSST
- LSST baseline: still qserv, not SciDB

Why?

- Timescales
 - NSF/DOE reviews vs SciDB development cycle
- Domain specific legacy
 - Custom libraries perfected for decades
- Control
 - Priorities decided by stakeholder (funding issue)
 - Project longevity

Backup Slides

Jacek Becla, XLDB-Europe , CERN, May 2013


Ħ

冊

1000

Credit: Jeff Kantor, LSST Corp

Final Image Archive	345 PB	All Data Releases [*] Includes Virtual Data (315 PB)
Final Image Collection	75 PB	Data Release 11 (Year 10) * Includes Virtual Data (57 PB)
Final Catalog Archive	46 PB	All Data Releases*
Final Database	9 PB 32 trillion rows	Data Release 11 (Year 10) * Includes Data, Indexes, and DB Swap
Final Disk Storage	228 PB 3700 drives	Archive Site Only
Final Tape Storage	83 PB 3800 tapes	Single Copy Only
Number of Nodes	1800	Archive Site Compute and Database Nodes
Number of Alerts Generated	6 billion	Life of survey

Credit: Mike Freemon, NCSA

How much *storage* will we need?

		Archive Site	Base Site
Disk Storage for Images	Capacity	$19 \rightarrow 100 \text{ PB}$	$12 ightarrow 23 \ \mathrm{PB}$
	Drives	1500 → 1100	950 → 275
	Disk Bandwidth	120 → 425 GB/s	27 → 31 GB/s
Disk Storage for Databases	Storage Capacity	$10 \rightarrow 128 \text{ PB}$	$7 \rightarrow 95 \text{ PB}$
	Disk Drives	1400 → 2600	1000 → 2000
	Disk Bandwidth (sequential)	125 ightarrow 625 GB/s	95 → 425 GB/s
Tape Storage	Capacity	8 → 83 PB	8 → 83 PB
	Tapes	1000 → 3800 (near line) 1000 → 3800 (offsite)	1000 → 3800 (near line) no offsite
	Tape Bandwidth	6 → 24 GB/s	$6 \rightarrow 24 \text{ GB/s}$
L3 Community Disk Storage	Capacity	0.7 → 0.7 PB	0.7 → 0.7 PB

Compute Nodes	1700 → 1400 nodes	$300 \rightarrow 60$ nodes
Database Nodes	$100 \rightarrow 190 \text{ nodes}$	$80 \rightarrow 130$ nodes

Before the right arrow is the Operations Year 1 estimate; After the arrow is the Year 10 estimate. All numbers are "on the floor"

Credit: Mike Freemon, NCSA