Double B-hadron tagging using jet substructure in ATLAS

Ariel Schwartzman SLAC

Berkeley Workshop on Heavy Flavor Production at Hadron Colliders

16-Jan-2013

Introduction

- Gluons can split to 2 b-quarks at small angles, which can be reconstructed as one single (merged) b-jet
 - b-tagging algorithms do not provide information on the number of B-hadrons within jets, or on the <u>net heavy flavor</u> <u>content</u>
- Tagging and removing these jets can suppress SM backgrounds to physics searches (W(bb)j), and significantly reduce theoretical uncertainties in cross-section calculations (<u>A. Banfi's</u> <u>talk</u>)

 Developed new technique to identify b-tagged jets containing two B-hadrons exploiting the distinct b-jet substructure between single and double b-hadron b-jets

• ATLAS-CONF-2012-100 (4.7fb⁻¹)

Theoretical motivation

Inclusive b-jet spectrum suffers from large theoretical uncertainties

- Large K-factors (6-10)
- LO channel is smaller than NLO gluon splitting and flavor excitation channels due to strong enhancements from collinear logarithms
- Largest uncertainty from gluon splitting
- Flavor-k_t algorithm can significantly improve the accuracy of the b-jet cross section by not including the contribution from from double Bhadron jets
 - Jets that contain equal number of b and anti-b quarks are considered light, such that merged b-jets from gluon splitting do not contribute to the b-jet spectrum

A. Banfi, G. Salam, G. Zanderighi JHEP 0707:026

Double B-hadron tagging

Two possible approaches:

• Direct reconstruction of two secondary vertices within jets:

- o Used by CDF [PRD 71 (2005) 092001] and CMS [JHEP 03 (2011) 136]
- Low reconstruction efficiency due to impact parameter requirements
- Additional reconstruction inefficiencies at small angular separation between the two B-hadrons
- Separation between B-B and B-D cascade decays

Exploit the substructure differences between single and merged b-jets:

- One-prong vs. two-prong (track)-jet structure
- Does not require the presence of two displaced vertices.
- Anti-k_t R=0.4 jets, b-tagged by the ATLAS MV1 tagger (60% efficiency operational point)
- $\circ~$ Jet substructure observables computed from tracks with $p_T\!\!>\!\!1~GeV$
- Multivariate likelihood trained with Pythia dijet Monte Carlo Samples

Kinematic differences between single and double b-hadron jets (I)

Merged b-jets have more tracks (on average) than single b-jets

Track-jet width

Track-jet width

Kinematic differences between single and double b-hadron jets (III)

DR separation between exclusive k_t subjets

Correlations

- N-subjettiness τ_2 strongly correlated with jet width
- Other jet substructure variables (eccentricity, DR between leading tracks, τ_{21}) did not show large discrimination

Validation of variables with data

Double B-hadron tagger

Multivariate likelihood discriminator:

- o Jet track multiplicity, Track-jet width, DR between k_t subjets
- $_{\odot}~$ Training performed in bins of jet p_{T}

Tagging performance

 Rejection of merged b-jets @ 50% b-jet efficiency:

8x for jet p_T>40 GeV
30x for jet p_T>200 GeV

 Same likelihood performance for b-jets identified with different b-tagging algorithms (JetFitter), and operational points (70% MV1)

Systematic uncertainties

- Evaluate the impact of tracking, btagging, and jet energy scale and resolution uncertainties on the tagger performance
 - merged b-jet rejection uncertainty at 50%-60% single b-jet efficiency

Systematic source	Uncertainty
pile-up	neglible
<i>b</i> -tagging efficiency	neglible
track reconstruction efficiency	4%
track $p_{\rm T}$ resolution	neglible
jet $p_{\rm T}$ resolution	6%
jet energy scale	5%

- ATLAS has developed an algorithm to identify and tag double B-hadron jets using substructure techniques
 - $\circ~$ 20x rejection at 50% b-jet efficiency is achieved for jets with $p_T \!\!>\!\! 100$ GeV
- The method exploits the differences in the internal structure between single and merged b-jets produced from gluon splitting
 - Combines b-tagging with jet substructure techniques
 - Does not require the reconstruction of two displaced vertices
- Double B-hadron tagging can have multiple applications in physics analyses and enhance the physics precision of the LHC

Backup slides

QCD b-quark production

