

Experiment Support group

Authentication and Authorization (AAI)

issues concerning

Storage Systems and Data Access

Pre-GDB, 2013-02-12 Maarten Litmaath

History

- Security TEG WG "AAI on Storage Systems"
 - Jointly with Data & Storage Management TEGs
 - https://twiki.cern.ch/twiki/bin/view/LCG/AAIOnStorageSystems
- Summary of status quo and issues presented in pre-GDB of Feb 7, 2012
- Some further discussion on Security/DM/SM TEG mailing lists
- Summary document at v0.4 since Apr 2, 2012
 - Attached to the Twiki page

Status quo (1)

- Storage element and catalog configurations
 - Production/group data is protected against modification by unprivileged users
 - Tape access by unprivileged users is essentially prevented
 - User and group access are regulated by the experiment frameworks
 - Including quotas
 - An SE may in fact be more permissive than desired → to be checked and fixed as needed

Status quo (2)

- Dealing with X509 overhead
 - Use bulk methods, sessions or trusted hosts where needed
 - Hosts should at most be trusted within sites
 - Look into cheap, short-lived session tokens?
 - Implementation may be expensive
- ALICE use security envelopes for data operations
 - Minimal potential damage when stolen
- CASTOR NS and RFIO backdoors are being closed
 - Insecure legacy clients being phased out

Data protection issues (1)

- Do different data classes need the same protection?
 - Custodial → highest security to protect against tampering
 - Cached -> can be replaced, but can the security therefore be relaxed?
 - User → highest security to protect against tampering <u>and</u> reading by others

Data protection issues (2)

- Read access based on data confidentiality?
 - Requires careful management of categories -> expensive and/or bound to fail?
 - At least access to user data should be managed carefully
 - By <u>default</u> none of the data of one VO shall be readable by another
 - Thus incur security overhead also for large volumes that could be made public
 - Use bulk methods, sessions, trusted hosts as needed
 - Most of the data is transferred over insecure channels!
 - Bulk encryption may remain too expensive

Data protection issues (3)

- Access audit trails are important for traceability
 - For security
 - Tampering with existing data
 - Upload of illegal data
 - Access to confidential data
 - DoS attack
 - For investigations of performance issues
 - Which DN / VO is overloading my service?
- Traceability questionnaire:
 - https://twiki.cern.ch/twiki/bin/view/LCG/WLCGSecTraceability
 - Does your service record the necessary things, store the information in the right place with the right retention period and access control?

Data protection issues (4)

- Protection is needed or desirable against:
 - Information leakage → not only the data, but also the file names matter
 - "Higgs-discovery.root"
 - Read access to directories and logs to be regulated
 - Encrypt selected low-rate traffic?
 - Accidental commands → restrict write access as much as possible
 - Protect generic production data
 - Confine each analysis group to its own area
 - Protect user data
 - Attacks
 - See next page

Data protection issues (5)

- Protection against attacks
 - By outsiders exploiting a bug or doing a DoS
 - By insiders, or outsiders using stolen credentials
 - Maintain as few privileges as possible per VO member
 - May also help prevent accidents...
 - Use multi-person authorization ("two-man rule") for bulk data removal of VO-wide or group data?
 - Ditto...
- Also the SE itself needs protection
 - Against upload of illegal data
 - Against DoS

Issues with data ownership (1)

- Missing concept: data owned by a VO, subgroup or service.
 - Historically the DNs of production managers were and are still being used as owners
 - What if such a person moves on?
 - See next page
 - What if such a person also works on private analysis?
 - Privileged access to data may remain
 - » Wrong proxy used by mistake for analysis
 - » Storage element may couple privileges to DN
 - Use robot certificates instead?
 - At least ATLAS do that already

Issues with data ownership (2)

- Mapping a person to/from a credential
 - DN changes may affect data ownership
 - Ownership could be by the user's VOMS nickname or a generic attribute instead of the DN
 - A big change, but maybe well worth the investment?
 - Can we do this per SE type?
 - Can we do this per SE instance?
 - Natural nickname candidate: CERN account name
 - » Each user is in the CERN HR DB → can have an account
 - ATLAS already use nicknames in some of their services
 - ALICE: LDAP server supports multiple DNs per user
 - Might such an approach be less cumbersome?

Issues with data ownership (3)

- Mapping a person to/from a credential
 - X509 vs. Kerberos access
 - Is this only relevant for a few cases, e.g. EOS?
 - Try to avoid encumbering other SE types or instances
 - How to map Kerberos principal to/from DN?
 - Yet another map-file?
 - Use principal for ownership, map DN to it?
 - Use principal as VOMS nickname or generic attribute?
 - » See previous page
 - VOMS groups could be determined from map-file
 - Cf. dCache "vo-role-mapfile"
 - For writing a primary group may need to be decided
 - » It could be taken from the directory instead

Issues with data ownership (4)

- VO superuser concept desirable?
 - Avoid bothering SE admin for cleanups
 - Useful at least to ATLAS
 - How can different SE types implement this?
 - Maybe more relevant for certain types?

Cloud storage

- Do we need to be concerned about cloud storage in the context of these discussions?
 - Can cloud storage technologies suggest answers to some of the questions?
 - Do we just need to be concerned with a grid layer on top of such storage?
 - Cloud storage might be just another back-end