<u>Concepts for 20 T dipoles</u> SnowMass Preparation 21-2-2013 J. Van Nugteren

We want a new 20T Dipole

- Higher energies to find new fundamental physics
- So we can improve our understanding of the universe we live in
- However development of such a magnet will take some time
- Therefore we need to start thinking now
 - Many ideas 'floating' around
 - Many new technologies such as HTS
- Assignment: make first steps within context EUCARD I/II

(Wallpapers NASA)

Development Plan

- Started November 2012 in the framework of PhD
 - Work far from complete
- Compare all (or most relevant) designs/layouts
- Boundaries
 - Iron influence
 - With gain 2 T for single aperture
 - Without B distribution modified
 - Active shielding?
 - Conductor
 - Existing performance
 - Future extrapolated performance -> to prospect ultimate possibilities
 - Field quality
 - Not too much focus on field quality yet. Because winding pack is thick, it can be corrected for later.

TE Technology Department

Making a Fair Comparison

- All designs/layouts must follow same set of rules
 - 20 T operating field
 - same critical surfaces for conductor
 - same operating points (80%Ic)
 - same operating temperature (1.9 K)
 - same free bore (40 mm)
 - same assumptions on how to deal with forces
 - same shielding/iron
- Compare in terms of
 - Forces and stresses in coil
 - Amount of conductor
 - Feasibility
- Need to watch out to compare also to some designs of different groups.

TE Technology Department

Design Options

- Configuration per Layer
 - Cos-Theta
 - Block
 - Canted Cos-Theta
 - Perhaps other

Design Options

- Conductor per Layer
 - NbTi
 - Nb3Sn
 - YBCO (fieldangle)
 - BSCCO (stresses)
- Cables
 - Rutherford
 - Roebel
 - Cork
 - Other?
- One or multiple power supplies?

TE Technology Department

Pocket Sized Coil Optimizer

• New iterative 2D magnet optimization tool

Breg/

Pocket Sized Coil Optimizer

name	Fresca2	Ct2Ct1	Bl2Ct1	Bl2Ct2	Bl2Ct3	Bl2Ct4	Bl2Hc1	Bl2Bl1	Bl2Bl2	Bl2Bl5	Bl2Bl7	Bl2Bl8	B12B14	B12B16
layout				(jed)	(jiii)									
YBCO	0.00 [T] 0.0 [mm ²] 0.00 [MPa]	6.00 [T] 23052.9 [mm ²] 102.71 [MPa]	6.00 [T] 7204.5 [mm ²] 154.39 [MPa]	6.00 [T] 5515.0 [mm ²] 164.43 [MPa]	7.00 [T] 4704.0 [mm ²] 188.18 [MPa]	7.00 [T] 4264.7 [mm ²] 186.03 [MPa]	7.00 [T] 7318.8 [mm ²] 181.26 [M Pa]	6.00 [T] 6025.7 [mm ²] 160.02 [MPa]	7.00 [T] 8783.3 [mm ²] 172.02 [M Pa]	7.00 [T] 4843.2 [mm ²] 206.90 [MPa]	7.00 [T] 4691.8 [mm ²] 184.10 [MPa]	7.00 [T] 3399.1 [mm ²] 148.67 [M Pa]	8.00 [T] 4132.2 [mm ²] 169.83 [MPa]	7.00 [T] 4570.5 [mm ²] 169.30 [M Pa]
BSCCO	0.00 [T] 0.0 [mm ²] 0.00 [MPa]	0.00 [T] 0.0 [mm ²] 0.00 [MPa]	0.00 [T] 0.0 [mm ²] 0.00 [MPa]	0.00 [T] 0.0 [mm ²] 0.00 [M Pa]	0.00 [T] 0.0 [mm ²] 0.00 [M Pa]	0.00 [T] 0.0 [mm ²] 0.00 [MPa]	0.00 [T] 0.0 [mm ²] 0.00 [MPa]	0.00 [T] 0.0 [mm ²] 0.00 [MPa]	0.00 [T] 0.0 [mm ²] 0.00 [MPa]	0.00 [T] 0.0 [mm ²] 0.00 [MPa]	0.00 [T] 0.0 [mm ²] 0.00 [M Pa]	0.00 [T] 0.0 [mm ²] 0.00 [M Pa]	0.00 [T] 0.0 [mm ²] 0.00 [MPa]	0.00 [T] 0.0 [mm ²] 0.00 [M Pa]
Nb3Sn	11.03 [T] 29640.8 [mm ²] 88.94 [MPa]	14.00 [T] 57257.3 [mm ²] 244.69 [M Pa]	14.00 [T] 36621.4 [mm ²] 222.93 [MPa]	14.00 [T] 31536.9 [mm ²] 207.23 [M Pa]	13.00 [T] 22930.6 [mm ²] 214.66 [MPa]	8.29 [T] 22456.1 [mm ²] 167.62 [MPa]	13.00 [T] 22908.4 [mm ²] 380.20 [M Pa]	7.00 [T] 18558.2 [mm ²] 147.02 [MPa]	6.50 [T] 16250.3 [mm ²] 138.03 [M Pa]	7.00 [T] 15472.6 [mm ²] 123.39 [MPa]	6.00 [T] 13331.4 [mm ²] 119.02 [MPa]	6.00 [T] 6899.1 [mm ²] 63.16 [M Pa]	5.50 [T] 5790.7 [mm ²] 55.32 [MPa]	7.00 [T] 8195.7 [mm ²] 68.33 [M Pa]
NbTi	0.00 [T] 0.0 [mm ²] 0.00 [MPa]	0.00 [T] 0.0 [mm ²] 0.00 [MPa]	$\begin{array}{c} 0.00 \ [T] \\ 0.0 \ [mm^2] \\ 0.00 \ [MPa] \end{array}$	0.00 [T] 0.0 [mm ²] 0.00 [MPa]	0.00 [T] 0.0 [mm ²] 0.00 [M Pa]	4.71 [T] 17892.8 [mm ²] 69.77 [MPa]	0.00 [T] 0.0 [mm ²] 0.00 [MPa]	7.00 [T] 21157.7 [mm ²] 158.97 [MPa]	6.50 [T] 21719.4 [mm ²] 139.47 [M Pa]	6.00 [T] 15244.7 [mm ²] 136.95 [MPa]	7.00 [T] 14460.2 [mm ²] 138.28 [MPa]	7.00 [T] 12197.8 [mm ²] 76.46 [MPa]	6.50 [T] 11623.5 [mm ²] 63.08 [MPa]	6.00 [T] 11065.0 [mm ²] 79.33 [M Pa]
Rin Rout1 Rout2	58.24 [mm] 166.18 [mm] 137.72 [mm]	21.00 [mm] 246.45 [mm] 246.45 [mm]	21.00 [mm] 184.78 [mm] 184.78 [mm]	21.00 [mm] 158.47 [mm] 158.47 [mm]	21.00 [mm] 144.20 [mm] 144.20 [mm]	21.00 [mm] 182.99 [mm] 182.99 [mm]	21.00 [mm] 194.00 [mm] 194.00 [mm]	21.00 [mm] 188.52 [mm] 188.52 [mm]	21.00 [mm] 199.22 [mm] 199.22 [mm]	21.00 [mm] 166.86 [mm] 166.86 [mm]	21.00 [mm] 148.39 [mm] 148.39 [mm]	21.00 [mm] 130.92 [mm] 130.92 [mm]	21.00 [mm] 133.78 [mm] 133.78 [mm]	21.00 [mm] 132.92 [mm] 132.92 [mm]
Estored	0.66 [MJ/m]	4.56 [MJ/m]	2.28 [MJ/m]	1.64 [MJ/m]	1.31 [MJ/m]	1.30 [MJ/m]	3.30 [MJ/m]	1.88 [MJ/m]	2.07 [MJ/m]	1.51 [MJ/m]	1.22 [MJ/m]	0.97 [M J/m]	0.99 [MJ/m]	1.01 [MJ/m]

- Provides playground to create many coil designs (following the rules) for comparison
- At present we have studied YBCO insert, single aperture only to test the code
- Ultimate goal is to create comparative tables with many design options for dual aperture
- Already provided us with some ideas ...

Idea 1 – Angle optimization for YBCO 9

- The critical current of YBCO tapes/cables is highly dependent on the incident angle of the magnetic field
- Effect becomes stronger at higher fields
- Because of this for presently available YBCO, only designs with good field angle inside the insert turn out to be feasible

Idea 1 – angular optimization

• For example - Normal Block Coil

Idea 1 – angular optimization

- Insert: Crystalized Block Coil // Sharded Block Coil
- How to make the ends? (Need 3D model)

- 20 T magnet would require massive iron yoke
- Therefore it was decided to look also at active shield coils
 - Less weight
 - More compact
- However
 - Instead of gaining field you lose field
 - There is something called **Blooming Field** Effect

• Single aperture – no shield

Note that for the dual aperture case, the result is different (this is an exercise)

TE Technology Department

(ĒRN

• Single aperture – 1 shield block

• Requires approximately 10-15% extra conductor

TE Technology Department

• Single aperture – 2 shield blocks

Idea 2 – Dual aperture active shield? ¹⁶

- Dual aperture gives quadrupole stray field
- Artistic impression of possible shield layout
- Yet to be researched

- Two-in-One aperture (and its shielding)
- Iron including saturation
- Coil ends in 3D models
- Designs with BSCCO
- Mechanics
- Quench Behaviour

Thank you for your kind attention

PSCO – Simply Nesting Layers

- Types of layers
 - Sector (cosine theta, helical, ...)
 - Block (block coil)
- Nesting conditions (in/out)
 - wallin–
 - wallout
 - radiusin–
 - radiusout
 - radiuscen
 - beampipe
 - beampipe_sqe
 - beampipe_sqo-

Technology Department

moving

