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RECALL OF DESIGN

o Field ~ current density j x coil width w

o Current density is the main choice of the magnet designer
o Pioneering work of McIntyre 20 | Mclptyre
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Field versus coil width

o Low current density brings two advantages
o More margin for protection
o Lower stress

o Other main choice: have a 20% margin on the loadline
o So we must have a coil reaching 25 T at short sample!
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RECALL OF DESIGN

o Hypothesis: cost Nb-Ti is one, Nb,;Sn is 4 times,

HTS is 16 times

o Use Nb-Tiupto8 T, Nb;Snup to13 T,
HISupto20T

o We also use Nb;Sn with half current density to have 2 more Tesla
and reach 15 T, saving on HTS (see next section)

o Lower cost, at the price of complexity
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WHERE ARE WE WITH NB,SN?

o Project is in mid term future so some optimism is allowed to
account for progress in technology

o Nb;Sn performance has greatly improved (doubled in ten years), so
no space is assumed for further optimization
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An historical view on the improvement of Nb-Ti and Nb,;Sn performance [L. Bottura, ASC 2012]
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WHERE ARE WE WITH NB,SN?

o Hypothesis

o Copper to superconductor of 1.1 (as in recent LARP and 11 T
magnets)

o Insulation, voids (impregnation) bring dilution factor to 0.33
o S0 we aim at

o 13/0.8=16.25 T we want 380*3/0.8=1400 A /mm?
o 15/0.8=18.75 T we want 190*3/0.8=700 A/ mm?

o Today best conductor (2500 A/mm? at 12 T, 4.2 K) provides these
values, with 10% cable degradation [B. Bordini, based on PIT and RRP data]

o But this is extrapolation of data at lower fields, so measurements in the
15-18 T range would be warmly welcome
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WHERE ARE WE WITH NB,SN?

o Protection
o For protection, we are at a level of energy density in the coil of about
0.2 J/mm? - this is ~50% more what we have in Nb,Sn magnets

o More copper could be needed, so further increase of current density in
the superconductor could be useful
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Energy density in the coil versus current density in the coil, with protection time margin
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@] WHERE ARE WE WITH HTS?

o Two options: YBCO and Bi-2212

o YBCO

o Tape ®

o Very good current density in parallel direction © but strong
anisotropy ®

o Stress resistant ©

o Bi-2212
o Cable ©

o No anisotropy ©
o No stress resistant (reinforemcent in strand needed) ®

o Several activities ongoing in different labs [G. De Rijk, S. Prestemon,
this workshop], wide experience with solenoids
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WHERE ARE WE WITH HTS?

o Both YBCO and Bi-2122 are ~400 A/mm?, vs 480 A/mm?
required
o YBCO: Preliminary analysis of field direction in Malta coil: in HTS coil

angle between field and conductor is up to 30°, so I think we have to
forget about YBCO parallel performance
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MAKING IT SIMPLER?

o Malta design (slightly simplified) . R
o Guideline: follow HD2 and Fresca?2 mechanical Eo [ s o] e | o
structure, i.e. no supporting elements in the I i

coil - preliminary analysis shows stress<200 MPa *~ * "’ ® ™ %

o One double pancake of HTS
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Revised Malta design for 20 T magnet, one quarter of coil shown
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MAKING [T SIMPLER?

o Malta design (slightly simplified)

o One double pancake of HTS

o One double + one single pancake of low j Nb,Sn ’ \ ]
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MAKING [T SIMPLER?

o Malta design (slightly simplified)
o One double pancake of HTS
o One double + one single pancake of low j Nb;Sn
o One double + one single pancake of Nb,;Sn
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MAKING IT SIMPLER?

o Malta design (slightly simplified)
o One double pancake of HTS
o One double + one single pancake of low j Nb;Sn

o One double + one single pancake of Nb,;Sn
o One double pancake of Nb-Ti
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o Six coils to be assembled per pole, four with flared ends, two flat
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MAKING IT SIMPLER?

o Malta design, without Nb-Ti
o One double pancake of HTS
o One double + one single pancake of low j Nb;Sn

o One double + one single pancake of Nb,;Sn
o Five coils to be assembled per pole

o Cost: +15%
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Revised Malta design for 20 T magnet (no Nb-Ti), one quarter of coil shown
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MAKING IT SIMPLER?

o Malta design without graded Nb,Sn
o One double pancake of HTS

o One double + one single pancake of Nb,;Sn
o Three coils to be assembled per pole

o Cost: +50% (1.5 times the Malta design)
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Revised Malta design for 20 T magnet (no Nb;Sn grading, no Nb-Ti), one quarter of coil shown
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THE I5 T CASE

@ The 15T case, without Nb-Ti
o I passed to 1 mm strand to avoid three layers - HD2-like layout

o One double pancake of Nb;Sn used at low j, =190 A/ mm?
o One double pancake of Nb;Sn, two coils to be assembled per pole

o Cost: 45% of Malta
o 20% more (i.e. 55% of Malta) if no Nb-Ti grading
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BLOCK VERSUS COS THETA

o Block design advantages

o Fits the shape of the field allowing grading for very large coils

o Natural position of quench heaters (midplane and between double
pancakes

o Pursuing studies on this design is important (Fresca2, HD2, HD3)
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(&) OPTIMIZAZION OF CELL LENGTH

o LHC has a semi-cell length (distance between quadrupoles)
of L=50 m

o Main scaling
o Beta function ocL
o Beam size VL so longer spacing requires larger aperture ®
o Longer spacing requires less quadrupoles ©
o Integrated gradient Glecl/L so longer spacing requires lower
integrated gradient ©
o Example
o HE-LHC needs 1600 T, 40 mm aperture so with Nb;Sn we need 3.5

m quads : _
Energy Aperture Cell lenght Int. gradient Gradient Length
E @ L Gls G Iy
(Tev) (mm) (m) (M) (T/m) (m)
7.0 56 50 693 220 3.15
16.5 40 50 1636 462 3.54
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(&) OPTIMIZAZION OF CELL LENGTH

o If we get longer cell length, we will have less force needed
and less quadrupoles but larger aperture
o Hypothesis: 20 m max length of dipoles

o Either 20 T fixed and larger energy, or energy fixed and lower field

FIRST CASE: FIXED FIELD OF 20T
Energy Aperture Cell lenght Int. gradient Gradient Length Field Length Number Filling

E p L Gl, G l B 1 ng f
(TeV)  (mm) (m) (T) (T/m)  (m) (T) (m)  (adim) (adim)

7.0 56 50 693 220 3.15 83 143 3 0.858
16.5 40 50 1636 462 354 20.0 14.0 3 0.841
17.4 45 66 1303 411  3.17 20.0 195 3 0.885
17.7 50 83 1054 370 285 20.0 186 4 0.898
17.8 55 100 883 336 263 200 18.1 5  0.906

o Keeping a 20 T magnet, and making it larger we can gain 0.9-1.3 TeV
out of 16.5 TeV
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(&) OPTIMIZAZION OF CELL LENGTH

o If we get longer cell length, we will have less force needed
and less quadrupoles but larger aperture

o Either 20 T fixed and larger energy, or energy fixed and lower field
SECOND CASE: FIXED ENERGY OF 16.5 TeV

Energy Aperture Cell lenght Int. gradient Gradient Length Field Length Number Filling

E é L Gl, G lq B l 4 Ny f
(Tev)  (mm) (m) (M (T’m) (m) () (m) (adim) (adim)
7.0 56 50 693 220 3.15 8.3 14.3 3 0.858
16.5 40 50 1636 462 3.54 20.0 14.0 3 0.841
16.5 45 66 1235 411 3.01 18.9 19.5 3 0.887
16.5 50 83 983 370 2.66 18.6 18.7 4 0.901
16.5 55 100 818 336 244 185 182 5  0.908

o Keeping a 16.5 TeV energy, we can lower the field of 1-1.5 T
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(&) OPTIMIZAZION OF CELL LENGTH

o Whats the price? Rough estimate based on sector coil

o For a fixed energy, a 66 m long cell allows go to 45 mm aperture
with 19 T, saving 20% of HTS (10% of conductor cost in the cross-

section, 5% on global cost accouting for higher filling)
o Looks marginal - and longer cell does not help

Aperture Field  Cable quantity ratio w.r.t. 20 T, 40 mm

P B HTS  NbShl  NbSih  Nb-Ti
(mm) (M)  (mm) (mm) (mm) (mm)
40 200 1.00 1.00 1.00 1.00
45 189  0.79 0.97 0.98 0.96
50 18.6 0.78 1.00 1.00 0.97
55 185  0.81 1.03 1.02 1.00

o For a fixed field, 1 additional TeV costs ~10%

Aperture Field  Cable quantity ratio w.r.t. 20 T, 40 mm

o Then it rapidly diverges 4 B HTS Nbsl NbShh  NbTi
(mm) (M) (mm) (mm) (mm) (mm)

20 200 100 100 100 _ 1.00

45 200 109 105 103  1.04

50 200 117 109 106 108

55 200 126 114 109 112
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FUR THER DEVELOPMENTS

o Superconductors

o Push (and measure) performance of Nb;Sn in the range 15-18 T

o We are at Malta design values, but improvement could considerably
reduce costs

o Geta 20% more on j,in HTS, to reach 500 A/mm? at 25 T

o Today we are not so far !

o Magnet technology

o Fresca? and HD block designs are an essential step towards the 20 T
dipoles

o Block design has the advantage of allowing a natural way of grading the
material, and saving money

o Removable pole technology for Nb,Sn needed
o Splice technology to be widely studied
o Flared ends are still a problem today for block design
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CONCLUSION

o Simplifications
o We presented successive simplification of Malta design, each one
with price tag
o Seen from end to beginning, it can indicate a roadmap towards 20 T
o The Nb-Ti allows saving about 15%
o Without grading of Nb,Sn, price doubles
o Stopping at 15 T, with graded Nb,Sn price is 55%

o Optimizing cell length
o One could explore an option with longer cell length to have less
quadrupoles are larger filling factor

o Saving is not significant in this phase of the project
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