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How much energy in the Underlying Event? (UE)

How many of them are there? (σpileup)

What does the average collision look like? 
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Regge Theory

E.g.,  QGSJET, SIBYLL

+ “Mixed”
E.g.,  PHOJET, EPOS,

SHERPA-KMR

See e.g. Reviews by MCnet [arXiv:1101.2599] and KMR [arXiv:1102.2844]

Optical Theorem
+ Eikonal multi-Pomeron exchanges

σtot,inel ∝ log2(s)

Cut Pomerons → Flux Tubes (strings)
Uncut Pomerons → Elastic (& eikonalization)

Cuts unify treatment of all soft processes
EL, SD, DD, … , ND

Perturbative contributions added above Q0 

A Parton Based

to additional reconstructible jets is, however, quite small. Soft interactions that do not give
rise to observable jets are much more plentiful, and can give significant corrections to the
color flow and total scattered energy of the event. This a↵ects the final-state activity in a
more global way, increasing multiplicity and summed E

T

distributions, and contributing to
the break-up of the beam remnants in the forward direction.

The first detailed Monte Carlo model for perturbative MPI was proposed in [62], and
with some variation this still forms the basis for most modern implementations. Some useful
additional references can be found in [15]. The first crucial observation is that the t-channel
propagators appearing in perturbative QCD 2 ! 2 scattering almost go on shell at low p?,
causing the di↵erential cross sections to become very large, behaving roughly as
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This cross section is an inclusive number. Thus, if a single hadron-hadron event contains
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This simple argument in fact expresses unitarity; instead of the total interaction cross section
diverging as p?min

! 0 (which would violate unitarity), we have restated the problem so that
it is now the number of MPI per collision that diverges, with the total cross section remaining
finite. At LHC energies, the 2 ! 2 scattering cross sections computed using the full LO
QCD cross section folded with modern PDFs becomes larger than the total pp one for p?
values of order 4–5 GeV [74]. One therefore expects the average number of perturbative MPI
to exceed unity at around that scale.

Two important ingredients remain to fully regulate the remaining divergence. Firstly,
the interactions cannot use up more momentum than is available in the parent hadron.
This suppresses the large-n tail of the estimate above. In PYTHIA-based models, the MPI
are ordered in p?, and the parton densities for each successive interaction are explicitly
constructed so that the sum of x fractions can never be greater than unity. In the HERWIG
models, instead the uncorrelated estimate of hni above is used as an initial guess, but the
generation of actual MPI is stopped once the energy-momentum conservation limit is reached.

The second ingredient invoked to suppress the number of interactions, at low p? and
x, is color screening; if the wavelength ⇠ 1/p? of an exchanged colored parton becomes
larger than a typical color-anticolor separation distance, it will only see an average color
charge that vanishes in the limit p? ! 0, hence leading to suppressed interactions. This
provides an infrared cuto↵ for MPI similar to that provided by the hadronization scale for
parton showers. A first estimate of the color-screening cuto↵ would be the proton size,
p?min

⇡ ~/r
p

⇡ 0.3 GeV ⇡ ⇤
QCD

, but empirically this appears to be far too low. In current
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+ Unitarity & Saturation

→ Multi-parton interactions (MPI)
+ Parton Showers & Hadronization
Regulate dσ at low pT0  ~ few GeV

Screening/Saturation → energy-dependent pT0

Total cross sections from Regge Theory 
(Donnachie-Landshoff + Parametrizations)

E.g.,  PYTHIA,
HERWIG, SHERPA

B

⊗ PDFs

http://arxiv.org/abs/arXiv:1101.2599
http://arxiv.org/abs/arXiv:1101.2599
http://arxiv.org/abs/arXiv:1102.2844
http://arxiv.org/abs/arXiv:1102.2844
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⊗ PDFs

Main applications: Central Jets/EWK/top/
Higgs/New Physics 

Gluon PDF 
x*f(x)

Q2 = 1 GeV2 Warning: NLO 
PDFs < 0
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pT0 scale vs CM energy
Range for Pythia 6
Perugia 2012 tunes

100 TeV

30 TeV

7 TeV

0.9 TeV

Poor Man’s Saturation

High Q2 
and 

finite x

Extrapolation to soft scales delicate.
Impressive successes with MPI-based 
models but still far from a solved problem

Form of PDFs at small x and Q2

Form and Ecm dependence of pT0 regulator
Modeling of the diffractive component
Proton transverse mass distribution
Colour Reconnections, Collective Effects

Saturation

See also Connecting hard to soft: KMR, EPJ C71 (2011) 1617   +   PYTHIA “Perugia Tunes”: PS, PRD82 (2010) 074018

http://arxiv.org/abs/arXiv:1102.2844
http://arxiv.org/abs/arXiv:1102.2844
http://arxiv.org/abs/arXiv:1005.3457
http://arxiv.org/abs/arXiv:1005.3457
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What Cross Section?
Total Inelastic

Fraction with one charged particle in |η|<1

ALICE def : SD has MX<200

Ambiguous Theory Definition

Ambiguous Theory Definition

Ambiguous Theory Definition

Observed fraction corrected to total

σINEL @ 30 TeV:
Just under 100 mb
Say ~ 90 mb

σINEL @ 100 TeV:
Just over 100 mb
Say ~ 105 mb

σSD: a few mb larger than at 7 TeV
σDD ~ just over 10 mb

Disclaimer: for this talk, I do not aim for a precision better than, say, 10%
I will be basing extrapolations mainly on Pythia 6 with LHC tunes

If you find that too crude, I am willing to bet a bottle of good champagne on the numbers

Total Inelastic: Donnachie-Landshof (ε~0.08)
σINEL = σTOT  - σEL

σND = σINEL - σSD - σDD

and ⌅el = ⌅2
tot/16⇤Bel. The elastic slope parameter is parameterized by

Bel = BAB
el (s) = 2bA + 2bB + 4s� � 4.2 , (115)

with s given in units of GeV and Bel in GeV�2. The constants bA,B are bp = 2.3, b⇥,⇤,⌃,⌅ =
1.4, bJ/⇧ = 0.23. The increase of the slope parameter with c.m. energy is faster than
the logarithmically one conventionally assumed; that way the ratio ⌅el/⌅tot remains well-
behaved at large energies.

The di�ractive cross sections are given by

d⌅sd(XB)(s)

dt dM2
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2
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The couplings ⇥AIP are related to the pomeron term XABs� of the total cross section
parameterization, eq. (112). Picking a reference scale

⇤
sref = 20 GeV, the couplings are

given by ⇥AIP⇥BIP = XAB s�
ref . The triple-pomeron coupling is determined from single-

di�ractive data to be g3IP ⇥ 0.318 mb1/2; within the context of the formulae in this
section.

The spectrum of di�ractive masses M is taken to begin 0.28 GeV ⇥ 2m⇥ above the
mass of the respective incoming particle and extend to the kinematical limit. The simple
dM2/M2 form is modified by the mass-dependence in the di�ractive slopes and in the Fsd

and Fdd factors (see below).
The slope parameters are assumed to be

Bsd(XB)(s) = 2bB + 2�⇥ ln
�

s

M2

⇥
,
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,
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ss0

M2
1 M2

2

⌅

. (117)

Here �⇥ = 0.25 GeV�2 and conventionally s0 is picked as s0 = 1/�⇥. The term e4 in Bdd is
added by hand to avoid a breakdown of the standard expression for large values of M2

1 M2
2 .

The bA,B terms protect Bsd from breaking down; however a minimum value of 2 GeV�2

is still explicitly required for Bsd, which comes into play e.g. for a J/⇧ state (as part of a
VMD photon beam).

The kinematical range in t depends on all the masses of the problem. In terms of
the scaled variables µ1 = m2

A/s, µ2 = m2
B/s, µ3 = M2

(1)/s (= m2
A/s when A scatters

elastically), µ4 = M2
(2)/s (= m2

B/s when B scatters elastically), and the combinations

C1 = 1� (µ1 + µ2 + µ3 + µ4) + (µ1 � µ2)(µ3 � µ4) ,

C2 =
⇧

(1� µ1 � µ2)2 � 4µ1µ2

⇧
(1� µ3 � µ4)2 � 4µ3µ4 ,

C3 = (µ3 � µ1)(µ4 � µ2) + (µ1 + µ4 � µ2 � µ3)(µ1µ4 � µ2µ3) , (118)

one has tmin < t < tmax with
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given by βAIPβBIP = XAB sεref . The triple-pomeron coupling is determined from single-

diffractive data to be g3IP ≈ 0.318 mb1/2; within the context of the formulae in this section.

The spectrum of diffractive masses M is taken to begin 0.28 GeV ≈ 2mπ above the

mass of the respective incoming particle and extend to the kinematical limit. The simple

dM2/M2 form is modified by the mass-dependence in the diffractive slopes and in the Fsd

and Fdd factors (see below).

The slope parameters are assumed to be

Bsd(XB)(s) = 2bB + 2α′ ln
( s

M2

)
,

Bsd(AX)(s) = 2bA + 2α′ ln
( s
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)
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Here α′ = 0.25 GeV−2 and conventionally s0 is picked as s0 = 1/α′. The term e4 in Bdd is

added by hand to avoid a breakdown of the standard expression for large values of M2
1 M2

2 .

The bA,B terms protect Bsd from breaking down; however a minimum value of 2 GeV−2

is still explicitly required for Bsd, which comes into play e.g. for a J/ψ state (as part of a

VMD photon beam).

The kinematical range in t depends on all the masses of the problem. In terms of

the scaled variables µ1 = m2
A/s, µ2 = m2

B/s, µ3 = M2
(1)/s (= m2

A/s when A scatters

elastically), µ4 = M2
(2)/s (= m2

B/s when B scatters elastically), and the combinations

C1 = 1 − (µ1 + µ2 + µ3 + µ4) + (µ1 − µ2)(µ3 − µ4) ,

C2 =
√

(1 − µ1 − µ2)2 − 4µ1µ2

√
(1 − µ3 − µ4)2 − 4µ3µ4 ,

C3 = (µ3 − µ1)(µ4 − µ2) + (µ1 + µ4 − µ2 − µ3)(µ1µ4 − µ2µ3) , (7.74)

one has tmin < t < tmax with
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The Regge formulae above for single- and double-diffractive events are supposed to hold

in certain asymptotic regions of the total phase space. Of course, there will be diffraction

also outside these restrictive regions. Lacking a theory which predicts differential cross

sections at arbitrary t and M2 values, the Regge formulae are used everywhere, but fudge

factors are introduced in order to obtain ‘sensible’ behaviour in the full phase space. These

factors are:

Fsd =

(
1 − M2

s

)(
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cres M2
res

M2
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)
,
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2

)
. (7.76)

– 142 –

The point with an event generator is that we 
can now ask: What do these events look like?

(Advice: don’t use 
google docs for 
making plots)

(elastic is included on summary slide)
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Minimum-Bias Properties
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LHC has produced a huge repository of min-bias constraints. 
See e.g., mcplots.cern.ch

Only a few significant comparisons can be included here

Question: Why is it crucial to use updated (LHC) models/tunes?

8

Table 1. Charged-particle pseudorapidity densities at central pseudorapidity (|η| < 1), for inelastic collisions having at least
one charged particle in the same region (INEL>0|η|<1), at three centre-of-mass energies. For ALICE, the first uncertainty is
statistical and the second is systematic. The relative increases between the 0.9 TeV and 2.36 TeV data, and between the 0.9 TeV
and 7 TeV data, are given in percentages. The experimental measurements are compared to the predictions from models. For
PYTHIA the tune versions are given in parentheses. The correspondence is as follows: D6T tune (109), ATLAS-CSC tune (306),
and Perugia-0 tune (320).

Energy ALICE PYTHIA [5,6] PHOJET [10]

(TeV) (109) [7] (306) [8] (320) [9]

Charged-particle pseudorapidity density

0.9 3.81 ± 0.01+0.07
−0.07 3.05 3.92 3.18 3.73

2.36 4.70 ± 0.01+0.11
−0.08 3.58 4.61 3.72 4.31

7 6.01 ± 0.01+0.20
−0.12 4.37 5.78 4.55 4.98

Relative increase (%)

0.9–2.36 23.3± 0.4+1.1
−0.7 17.3 17.6 17.3 15.4

0.9–7 57.6± 0.4+3.6
−1.8 43.0 47.6 43.3 33.4

Increase (%)
0 20 40 60

D6T
PYTHIA

ATLAS-CSC
PYTHIA

Perugia-0
PYTHIA

PHOJET

| < 1ηALICE       INEL>0      |
 2.36 TeV→       0.9 TeV 
 7.0 TeV→       0.9 TeV 

Fig. 1. Relative increase of the charged-particle pseudorapid-
ity density, for inelastic collisions having at least one charged
particle in |η| < 1, between

√
s = 0.9 TeV and 2.36 TeV (open

squares) and between
√
s = 0.9 TeV and 7 TeV (full squares),

for various models. Corresponding ALICE measurements are
shown with vertical dashed and solid lines; the width of shaded
bands correspond to the statistical and systematic uncertain-
ties added in quadrature.

in Table 1 and compared to models. The measured val-
ues are higher than those from the models considered,
except for PYTHIA tune ATLAS-CSC for the 0.9 TeV
and 2.36 TeV data, and PHOJET for the 0.9 TeV data,
which are consistent with the data. At 7 TeV, the data
are significantly higher than the values from the models
considered, with the exception of PYTHIA tune ATLAS-
CSC, for which the data are only two standard devia-
tions higher. We have also studied the relative increase
of pseudorapidity densities of charged particles (Table 1)
between the measurement at 0.9 TeV and the measure-
ments at 2.36 TeV and 7 TeV. We observe an increase
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Fig. 2. Charged-particle pseudorapidity density in the cen-
tral pseudorapidity region |η| < 0.5 for inelastic and non-
single-diffractive collisions [4,16–25], and in |η| < 1 for inelas-
tic collisions with at least one charged particle in that region
(INEL>0|η|<1), as a function of the centre-of-mass energy. The
lines indicate the fit using a power-law dependence on energy.
Note that data points at the same energy have been slightly
shifted horizontally for visibility.

of 57.6%± 0.4%(stat.)+3.6
−1.8 %(syst.) between the 0.9 TeV

and 7 TeV data, compared with an increase of 47.6% ob-
tained from the closest model, PYTHIA tune ATLAS-
CSC (Fig. 1). The 7 TeV data confirm the observation
made in [4, 16] that the measured multiplicity density in-
creases with increasing energy significantly faster than in
any of the models considered.

In Fig. 2, we compare the centre-of-mass energy de-
pendence of the pseudorapidity density of charged parti-
cles for the INEL>0|η|<1 class to the evolution for other
event classes (inelastic and non-single-diffractive events),
which have been measured at lower energies. Note that

Relative increase in the central charged-track multiplicity from 
0.9 to 2.36 and 7 TeV

Discovery at LHC: things are larger and scale faster than we thought they did

Pre-LHC (Tevatron) Tunes

Central Charged-Track Multiplicity

Tevatron tunes were ~ 10-20% low on MB and UE … and scaled too slowly

EPJ C68 (2010) 345

See also energy-scaling tuning study, Schulz & PS, EPJ C71 (2011) 1644

http://arxiv.org/abs/arXiv:1103.3649
http://arxiv.org/abs/arXiv:1103.3649
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PHOJET

DW

Perugia 0 (2009)

Perugia 2012

Pythia 8.165

Data from ALICE EPJ C68 (2010) 345

Central Charged-Track Multiplicity

Tevatron tunes were ~ 10-20% low on MB and UE

A VERY SENSITIVE E-SCALING PROBE: relative increase in 
the central charged-track multiplicity from 0.9 to 2.36 and 7 TeV 

The updated models (as represented here by the Perugia 2012 tunes):
Agree with the LHC min-bias and UE data at each energy
And, non-trivially, they exhibit a more consistent energy scaling between energies

So we may have some hope that we can use these models to do extrapolations

Caveat: still not fully understood why Tevatron tunes were low. May point to a more subtle energy scaling?

See also energy-scaling tuning study, Schulz & PS, EPJ C71 (2011) 1644

Pre-LHC (Tevatron) Tunes

http://arxiv.org/abs/arXiv:1103.3649
http://arxiv.org/abs/arXiv:1103.3649
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Scaling of Multiplicities
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Figure 5: Collision-energy dependence of the midrapidity charged hadron invariant yields in non single-diffractive (NSD, left panel) and inelastic
(right panel) p-p and p-  p collisions compared to the predictions of qgsjet01 and II, sibyll, and epos.

In the case of the pythia and phojet simulations we have computed 〈p⊥〉 as done by CMS [38], i.e. by fitting the
midrapidity p⊥-differential charged hadron spectra with the Tsallis function [99], and averaging the p⊥ over that func-
tion. For the RFT models we simply average the p⊥ of all the charged particles in the central η range. Applying the
NSD or full-inelastic selections does not change drastically the values of 〈p⊥〉 which differ only by ∼ 5%. Also, the
exact pseudorapidity coverage of the measurement around midrapidity (e.g. |∆η| < 1 or |∆η| < 2.5) does not change
much the associated mean p⊥ values (∼ -4%) although an extension to full rapidities would decrease its value by about
12%.

The energy dependence of the average transverse momentum of charged hadrons measured from the ISR collider
up to LHC energies is compared to the predictions of pythia and phojet (left panel) and of cosmic ray models (right
panel) in Fig. 6. The phojet and epos results are globally in good agreement with the

√
s-dependence of the average

p⊥ seen in the data. The Atlas-CSC pythia tune and sibyll predict a slower rate of increase at LHC energies. On the
contrary, the rate of the increase predicted by pythia Perugia-0 and by qgsjetII is compatible with the data but their
absolute scale is higher by roughly 10% and 20% respectively. The pythia 8 and qgsjet01 predictions miss the shape
and absolute magnitude of 〈p⊥〉 (

√
s). It is interesting to notice that the Atlas-CSC pythia tune which reproduced well

the pseudorapidity distribution (Fig. 2) predicts a too low value for the average p⊥, while the Perugia-0 tune which
has a too low multiplicity shows a too large 〈p⊥〉.

4.3. Multiplicity probability distributions
The multiplicity distribution P(Nch), i.e. the probability to produce Nch charged hadrons in an event, is of special

interest because it provides extra differential constraints on the internal details of the hadronic interaction models.
The low multiplicity part is mostly dominated by the contributions from diffraction (and from single-cut Pomeron
exchanges in the RFT approaches), whereas the tail of the distribution gives information on the relative contribution
of multiparton scatterings (multi-Pomeron exchanges). The ALICE experiment has measured multiplicity distribu-
tions within |η| < 1 using different triggers (inelastic, ‘Inel>0’ with at least one particle measured in the considered
η range, and NSD) at 900 GeV, 2.36 TeV and 7 TeV [36, 37]. Such different triggers affect significantly the first
few bins of the distributions, where their maxima lie. The CMS collaboration has provided a higher statistics set of
results [100] but applying a NSD trigger and, thus, with large uncertainties (up to 40%) in the low multiplicity part
of the distributions. In Figs. 7 and 8, we show the P(Nch) probabilities for the ALICE ‘Inel>0’ selection at the three
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Historically, Monte Carlo (MC) event generators of high-energy hadronic collisions have evolved either starting
up from the RFT approach, exemplified e.g. in the original Dual Parton Model (DPM) [67], extended with a leading-
logarithmic pQCD description for high-p⊥ production (based on cut-Pomerons) – such as in the phojet [57, 58],
qgsjet01 and II [49, 51, 52, 53], sibyll [54, 55, 56], neXus [68, 69], epos [62] and dpmjet [60, 61] cases – or they
started from a purely collinear-factorized framework – such as in e.g. general-purpose MCs like pythia [46] – com-
plemented with an add-on model for truly soft [70] and diffractive [71] scatterings. Thus, on the one hand, the RFT
approaches try to extend a consistent framework based on Pomeron degrees of freedom to the hard regime. On the
other, the collider MCs contain a description based on partonic degrees of freedom (with scattering cross sections
dumped in the infrared, below a “tunable” semihard scale) with soft and diffractive scatterings incorporated in a more
or less ad hoc way. In both approaches the final non-perturbative transition of partons to hadrons is modeled based
on the ideas of the Lund string fragmentation model [72]. At increasingly higher

√
s, in both frameworks one has to

account for multiple scattering processes between the colliding hadrons, namely one has to include multi-Pomeron
exchanges and/or multiple hard scattering processes.

In the RFT framework, the single Pomeron (P) exchange amplitude is characterized by a power-like energy de-
pendence, f P(s, t) ∝ sαP(0), with the Pomeron intercept αP(0) ∼ 1.1 leading to a corresponding energy rise of the total
cross section σtot =

1
2s Im f P(s, 0), which asymptotically violates the so-called Froissart bound (σtot < c log2 s) [73].

Accounting for eikonal multi-Pomeron exchanges, the cross sections are unitarized, i.e. σtot,inel ∝ log2 s, although due
to the Abramovskii-Gribov-Kancheli (AGK) cancellations [74] such multi-Pomeron configurations give zero contri-
bution to inclusive particle spectra. Thus, the total soft charged particle density produced at midrapidity follows the
energy-dependence defined by a single Pomeron exchange contribution:

dNch(s, η)
dη

∣

∣

∣

∣

∣

η=0
∝

Im f P(s, 0)
s σinel

pp (s)
∼

s∆P

log2 s
, with ∆P ≡ αP(0) − 1 ∼ 0.1. (1)

In pure DGLAP-based models, the central pseudo-rapidity particle density is proportional to the inclusive jet cross
section which is given by the convolution of parton distributions functions (PDFs) and parton-parton scattering cross
sections:

σ
jet
pp(s,Q2

0) =

∫

dx1 dx2

∫

dp2
⊥

∑

i, j=q,  q,g
fi/p(x1, p2

⊥) f j/p(x2, p2
⊥) ×

dσi j(x1x2s, p2
⊥)

dp2
⊥

Θ(s − 4p2
⊥) . (2)

The hard cross section is divergent in the limit p⊥ → 0 and one needs to introduce a p⊥-cutoff Q0 to indicate the
regime of validity of the perturbative approximation. At increasingly larger c.m. energies, one needs to account
for multi-parton scatterings and saturation effects. On the one hand, the cross section predicted by the regularized
processes exceeds the total inelastic cross section, indicating that several (or multiple) hard scatterings occur per
collision. On the other, for decreasing but still perturbative p⊥ values, the integrals receive major contributions from
the region of low parton fractional momenta (x = pparton/phadron), where the dominant gluon distribution rises roughly as
fg/p(x, p2

⊥) ∼ x−∆hard with ∆hard ) 0.3. After integrating above the p⊥-cutoff Q0, one obtains an energy-dependence of
the corresponding hard central charged hadron densities of the type

dNch(s, η)
dη

∣

∣

∣

∣

∣

η=0
∼
σ

jet
pp(s,Q2

0)
σinel
pp (s)

∼
s∆hard

Q2
0 log2 s

, with ∆hard ≈ 0.3. (3)

Clearly, the fast growth of the gluon densities at low x results in the hard part of the particle density (∝ s∆hard , ∆hard ∼
0.3) to rise with energy much faster than for soft processes (∝ s∆P , ∆P ∼ 0.1). However, at sufficiently small x, the
number of gluons is so large that new parton multiscattering phenomena have to be accounted for. First, non-linear
(gg fusion) effects become important in the PDFs themselves, saturating their growth as x → 0 [75]. The strength
of these effects is controlled by the “saturation scale” Q2

sat at which parton branching and fusion processes start to
compensate each other. Second, the probability to have simultaneous scatterings of the constituents of the colliding
hadrons also increases leading to multiple parton interactions (MPI) in a single collision. In many MC generators one
effectively mimics saturation effects by introducing some energy dependence to the infrared p⊥-cutoff: Q2

0 = Q
2
0(s).

5

D. d’Enterria et al. [arXiv:1101.5596], From soft models based on Regge Theory, expect:

NSD

A

EPOS too low
(but there is coming 
a new version which 
fits LHC better, 
worth trying out)

QGSJET too 
agressive? Would 
predict very high 
densities

Will keep these models in mind 
but will base main extrapolations 
on PYTHIA Perugia tunes 
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Extrapolations: Central <Nch>

8

0.9 TeV
2.36 TeV

7 TeV

30 TeV

Multiply numbers by 2*pi for
dNch/dη|η=0

Note: I use INEL>0 
(rather than NSD, INEL, …)

Recap: this means events with at 
least one charged particle in |η|<1

Extrapolations for INEL>0
Central <Nch> density
(Per unit ΔηΔφ in |η|<1)

@30 TeV : 1.32 ± 0.13

@100 TeV : 1.8 ± 0.4

100 TeV

(We allow a lower margin 
since power law may be 
too fast and we saw that 
the data scales slower than 
the current models)

B From parton-based models, expect ~ power law

Similar to 
QGSJET?

Similar to 
SYBILL?
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(Multiplicities with pT cuts)
Indication from LHC is that current PYTHIA models exhibit a slightly 
too hard pT spectrum. 

Rates of very soft particles may be underpredicted. Very hard particles may be overpredicted

9
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(Multiplicities with pT cuts: Extrapolations)

Thus, when we cut on pT 
to only include hard 
particles, PYTHIA’s 
numbers may be slightly 
high

We also saw that the total 
Nch density in the central 
Perugia 2012 model 
scaled bit faster than the 
ALICE measurement 
indicated. 

OK, so I would naively 
assume these numbers 
are conservative (high)

10

Pythia 6.4.28 MSTP(5) = 380 (Perugia 2012g)

Multiply numbers by 2π for
dNch/dη|η=0

Note: here using INEL 
(rather than INEL>0)

N
ch

 d
en

si
ty

 p
er

 u
ni

t e
ta

-p
hi



P. Skands Min-Bias Cross Sections & Characteristics

(Additional η regions)

11

Rapidity spectrum is flat 
(apart from high-y tails)

→ Pseudorapidity 
distribution has well-
known ‘seagull’ shape

→ small (O(10%)) 
dependence on region 
(apart from high-y tails)

Here including two 
additional regions that 
may be relevant: 

1 < |η| < 2.5
2.5 < |η| 3.0

Very small differences

1<|η|<2.5 (INEL)

Pythia 6.4.28 MSTP(5) = 380 (Perugia 2012g)
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How much energy is deposited in the detector?
ATLAS measurements only available with cuts on pT of particles, but still useful
From other measurements, we know that there are more very soft particles in the data than in MC
This will partially compensate the difference for |η|<2 below, but will exacerbate it for |η|>2.0

η Distribution Spectrum
in |η|<0.8

Tevatron Tune (DW)

So it looks like the MC predictions should be fairly good at least in the central region … 
Plots from http://mcplots.cern.ch

http://mcplots.cern.ch
http://mcplots.cern.ch
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Central Transverse Energy

13

Note: I use INEL and include all charged+neutral
This can be combined with σINEL to find the central ET deposited e.g. by pileup

Extrapolations for INEL
Central <ET> density

(per unit ΔηΔφ in |η|<1)

@30 TeV : (1.25 ± 0.2) GeV

@100 TeV : (1.9 ± 0.35) GeV

0.9 TeV

7 TeV

30 TeV

100 TeV

Multiply numbers by ΔR area for
ET deposited in given region
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Similar extrapolations (of <Nch> and <ET>) in the forward region would 
likely give underestimates, at least if done with current PYTHIA models

ET

Differences at high η 
exceeds the up/down variations

NCH

Would need at least some dedicated diffraction variations (more possibilities in PYTHIA 8)
Plus possibly improved (or at least systematically different) modeling → EPOS 2 or some of the 
dedicated cosmic-ray MC models? LHC-updated PHOJET? New Sherpa and/or Herwig models?

E
(as opposed to ET)

Plots from http://mcplots.cern.ch

http://mcplots.cern.ch
http://mcplots.cern.ch
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There are many UE variables. The most important is <ΣpT> in the Transverse Region
That tells you how much (transverse) energy the UE deposits under a jet. It is also more IR safe than <Nch>.

Note: “soft” models can
have problems with UE

900 GeV 7 TeV

Leading Track/Jet

Recoil Jet

Underlying 
Event

Δφ 
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These are the main variations I used (Perugia 2012 ueHi and ueLo)
They vary the pT0 regularization scale up/down as well as the pace of the energy-scaling of it.

Leading Track/Jet

Recoil Jet

Underlying 
Event

Δφ 

Transverse Region
(TRNS)

Sensitive to activity
at right angles to the 

hardest jets

Useful definition of 
Underlying Event

900 GeV 7 TeV



P. Skands Min-Bias Cross Sections & Characteristics

Test case: 100 GeV dijets
Measure ET in region transverse to the hardest track (in |η|<2.5)

Underlying Event - Extrapolation
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Charged-only fraction 
is about 1.6 times less

Rises from about 2 GeV per 
unit ΔR area at 900 GeV

 to 3.3 ± 0.2 GeV 
at 30 TeV 

 and 3.9 ± 0.3 GeV 
at 100 TeV 

UE Level

Leading Track/Jet

Recoil Jet

Underlying 
Event

Δφ 

0.9 TeV

7 TeV

30 TeV

100 TeV



P. Skands Min-Bias Cross Sections & Characteristics

Summary

If you don’t require precision better than 10%
And if you don’t look too far forward

And if you don’t look at very exclusive event details (such as isolating 
specific regions of phase space or looking at specific identified particles)

Then I believe these guesses are reasonable
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σINEL

~ 90 mb 
~ 105 mb 

Central <Nch> density (INEL>0)
~ 1.32 ± 0.13 / ΔηΔφ @ 30 TeV
~ 1.8 ± 0.4 / ΔηΔφ @ 100 TeV

Central <ET> density (INEL)
~ 1.25 ± 0.2 GeV / ΔηΔφ @ 30 TeV

~ 1.9 ± 0.35 GeV / ΔηΔφ @ 100 TeV

UE TRNS <ΣpT> density (j100)
~ 3.3 ± 0.2 / ΔηΔφ @ 30 TeV

~ 3.9 ± 0.3 / ΔηΔφ @ 100 TeV

Note: I only got a few days to put this together. It could obviously benefit by a dedicated study. 

See more control plots at http://mcplots.cern.ch

σEL

~ 25 mb
~ 32 mb

@ 30 TeV
@ 100 TeV

http://mcplots.cern.ch
http://mcplots.cern.ch

