Min-Bias Cross Sections \& Characteristics at 30-100 TeV

Peter Skands (CERN TH)

What does the average collision look like?

How many of them are there? ($\sigma_{\text {pileup }}$)

How much energy in the Underlying Event? (UE)

Theory Models

See e.g. Reviews by MCnet [arXiv: 1101.2599] and KMR [arXiv:1102.2844]

A) Parton-Based Models

Main applications:
 Central Jets/EWK/top/
 Higgs/New Physics

[^0]
Inelastic Cross Sections \& Scaling

Disclaimer: for this talk, I do not aim for a precision better than, say, $\mathbf{1 0 \%}$ I will be basing extrapolations mainly on Pythia 6 with LHC tunes

If you find that too crude, I am willing to bet a bottle of good champagne on the numbers

Total Inelastic: Donnachie-Landshof ($\varepsilon \sim 0.08$)
$\sigma_{\text {INEL }}=\sigma_{\text {TOT }}-\sigma_{\text {EL }}$
$\sigma_{\mathrm{ND}}=\sigma_{\mathrm{INEL}}-\sigma_{\mathrm{SD}}-\sigma_{\mathrm{DD}}$

$$
\begin{aligned}
\frac{\mathrm{d} \sigma_{\mathrm{sd}(A X)}(s)}{\mathrm{d} t \mathrm{~d} M^{2}} & =\frac{g_{3 \mathbb{P}}}{16 \pi} \beta_{A \mathbb{P}}^{2} \beta_{B \mathbb{P}} \frac{1}{M^{2}} \exp \left(B_{\mathrm{sd}(A X)} t\right) F_{\mathrm{sd}} \\
\frac{\mathrm{~d} \sigma_{\mathrm{dd}}(s)}{\mathrm{d} t \mathrm{~d} M_{1}^{2} \mathrm{~d} M_{2}^{2}} & =\frac{g_{3 \mathbb{P}}^{2}}{16 \pi} \beta_{A \mathbb{P}} \beta_{B \mathbb{P}} \frac{1}{M_{1}^{2}} \frac{1}{M_{2}^{2}} \exp \left(B_{\mathrm{dd}} t\right) F_{\mathrm{dd}}
\end{aligned}
$$

Pythia Cross Sections vs ALICE, and Extrapolations

(Advice: don't use
google docs for
making plots)

Minimum-Bias Properties

LHC has produced a huge repository of min-bias constraints.

See e.g., mcplots.cern.ch
Only a few significant comparisons can be included here

Question: Why is it crucial to use updated (LHC) models/tunes?

Discovery at LHC: things are larger and scale faster than we thought they did

See also energy-scaling tuning study, Schulz \& PS, EPJ C71 (2011) 1644

Minimum-Bias Properties

The updated models (as represented here by the Perugia 2012 tunes):
Agree with the LHC min-bias and UE data at each energy
And, non-trivially, they exhibit a more consistent energy scaling between energies
So we may have some hope that we can use these models to do extrapolations

Central Charged-Track Multiplicity

Tevatron tunes were $\sim 10-20 \%$ low on MB and UE

A VERY SENSITIVE E-SCALING PROBE: relative increase in the central charged-track multiplicity from 0.9 to 2.36 and 7 TeV

0\% 10\% 20\% 30\% 40\% 50\% 60\% 70\%
Data from ALICE EPJ C68 (2010) 345

Caveat: still not fully understood why Tevatron tunes were low. May point to a more subtle energy scaling?
See also energy-scaling tuning study, Schulz \& PS, EPJ C71 (2011) 1644

Scaling of Multiplicities

A
From soft models based on Regge Theory, expect:

$$
\left.\frac{d N_{\mathrm{ch}}(s, \eta)}{d \eta}\right|_{\eta=0} \propto \frac{\operatorname{Im} f^{\mathbb{P}}(s, 0)}{s \sigma_{p p}^{\mathrm{inel}}(s)} \sim \frac{s^{\Delta_{\mathbb{P}}}}{\log ^{2} s}
$$

Extrapolations: Central $<\mathrm{N}_{\mathrm{ch}}>$

B From parton-based models, expect ~ power law

(Multiplicities with p_{T} cuts)

Indication from LHC is that current PYTHIA models exhibit a slightly too hard pT spectrum.

Rates of very soft particles may be underpredicted. Very hard particles may be overpredicted

(Multiplicities with pT cuts: Extrapolations)

Thus, when we cut on p_{T} to only include hard particles, PYTHIA's numbers may be slightly high

We also saw that the total $\mathrm{N}_{\text {ch }}$ density in the central Perugia 2012 model scaled bit faster than the ALICE measurement indicated.

OK, so I would naively assume these numbers are conservative (high)

Note: here using INEL (rather than INEL>0)

Nch Density in |eta|<1.0 (INEL)
All pT

pT > 500 MeV
pT > 1 GeV

Log10(ECM[GeV])

(Additional η regions)

Rapidity spectrum is flat (apart from high-y tails)
\rightarrow Pseudorapidity distribution has wellknown 'seagull' shape

\rightarrow small (O(10\%)) dependence on region (apart from high-y tails)

Here including two additional regions that may be relevant:

$$
\begin{aligned}
& 1<|\eta|<2.5 \\
& 2.5<|\eta| 3.0
\end{aligned}
$$

Very small differences

Central Transverse Energy

How much energy is deposited in the detector?

ATLAS measurements only available with cuts on p T of particles, but still useful

From other measurements, we know that there are more very soft particles in the data than in MC This will partially compensate the difference for $|\eta|<2$ below, but will exacerbate it for $|\eta|>2.0$

So it looks like the MC predictions should be fairly good at least in the central region ...

Central Transverse Energy

Note: I use INEL and include all charged+neutral This can be combined with $\sigma_{\text {INEL }}$ to find the central E_{T} deposited e.g. by pileup

ET Density in |eta|<1.0 (INEL)
\square Perugia 2012 Max \square Perugia 2012 Min Perugia 2012

ET deposited in given region
@ $100 \mathrm{TeV}:(1.9 \pm 0.35) \mathrm{GeV}$

Forward Caveat

Similar extrapolations (of $<\mathrm{N}_{\mathrm{ch}}>$ and $<\mathrm{E}_{\mathrm{T}}>$) in the forward region would

 likely give underestimates, at least if done with current PYTHIA models

Would need at least some dedicated diffraction variations (more possibilities in PYTHIA 8)
Plus possibly improved (or at least systematically different) modeling \rightarrow EPOS 2 or some of the dedicated cosmic-ray MC models? LHC-updated PHOJET? New Sherpa and/or Herwig models?

Plots from http://mcplots.cern.ch

Underlying Event

There are many UE variables. The most important is $\left\langle\Sigma \mathrm{p}_{\mathrm{T}}>\right.$ in the Transverse Region That tells you how much (transverse) energy the UE deposits under a jet. It is also more IR safe than $<\mathrm{N}_{\mathrm{ch}}>$.

Transverse Region
(TRNS)
Sensitive to activity at right angles to the hardest jets

Useful definition of Underlying Event

Underlying Event

These are the main variations I used (Perugia 2012 ueHi and ueLo)
They vary the $\mathrm{p}_{\text {т }}$ regularization scale $u p /$ down as well as the pace of the energy-scaling of it.

Transverse Region

(TRNS)
Sensitive to activity at right angles to the hardest jets

Useful definition of Underlying Event

Underlying Event - Extrapolation

Test case: 100 GeV dijets

Measure ET in region transverse to the hardest track (in $|\eta|<2.5$)

Summary

If you don't require precision better than $\mathbf{1 0 \%}$

And if you don't look too far forward
And if you don't look at very exclusive event details (such as isolating specific regions of phase space or looking at specific identified particles)

Then I believe these guesses are reasonable

$\sigma_{\text {INEL }}$	$\sigma_{\text {EL }}$	
$\sim 90 \mathrm{mb}$	$\sim 25 \mathrm{mb}$	@ 30 TeV
$\sim 105 \mathrm{mb}$	$\sim 32 \mathrm{mb}$	$@ 100 \mathrm{TeV}$

Central $<\mathrm{N}_{\mathrm{ch}}>$ density $($ INEL >0)
$\sim 1.32 \pm 0.13 / \Delta \eta \Delta \varphi @ 30 \mathrm{TeV}$
$\sim 1.8 \pm 0.4 / \Delta \eta \Delta \varphi @ 100 \mathrm{TeV}$

Central $<\mathrm{E}_{\mathrm{T}}>$ density (INEL)
$\sim 1.25 \pm 0.2 \mathrm{GeV} / \Delta \eta \Delta \varphi @ 30 \mathrm{TeV}$
$\sim 1.9 \pm 0.35 \mathrm{GeV} / \Delta \eta \Delta \varphi @ 100 \mathrm{TeV}$

UE TRNS $<\Sigma \mathrm{p}_{\mathrm{T}}>$ density (j 100)
$\sim 3.3 \pm 0.2 / \Delta \eta \Delta \varphi @ 30 \mathrm{TeV}$
$\sim 3.9 \pm 0.3 / \Delta \eta \Delta \varphi @ 100 \mathrm{TeV}$

Note: I only got a few days to put this together. It could obviously benefit by a dedicated study.
See more control plots at http://mcplots.cern.ch

[^0]: See also Connecting hard to soft: KMR, EPJ C71 (2011) 1617 + PYTHIA "Perugia Tunes": PS, PRD82 (2010) 074018

