Performance reach of LHC beam dump

B.Goddard: input from L.Ducimetière, W.Bartmann, V.Mertens, J.Borburgh, F.Velotti, M.Barnes, C.Bracco, V.Senaj, M.Meddahi, V.Kain, J.Uythoven

Joint Snowmass-EuCARD/AccNet-HiLumi LHC workshop 'Frontier Capabilities for Hadron Colliders' on 21st and 22nd February 2013

Outline of talk

- Introduction
- Existing LHC beam dumping system
- ▶ 16.5 TeV beam dump in present LHC tunnel
- ▶ 50 TeV beam dump
- Summary

Present LHC dump system - concept

$extract \Rightarrow dilute \Rightarrow absorb$

- "Loss-free" fast extraction system
 - Laminated steel kickers (H deflection)
 - DC Lambertson septum (V deflection)
- Dilution system
 - Laminated steel 'sweep' kickers (H&V)
 - ▶ ~650 m drift length
- Beam dump (absorber) block
 - ▶ 7.7 m long, 0.7 m Ø C cylinder, steel and concrete shielding
- Protection devices (against asynchronous dump)
 - Graphite/CC/composite dilutors for septum and LHC machine

Present design - schematic layout

Total 'beamline' length:
975m from kicker MKD to dump TDE

Present design - tunnel layout

Beam dump block (TDE)

- ▶ 700 mm Ø graphite core, with graded density of 1.1 g/cm³ and 1.7 g/cm³
- ▶ 12 mm wall, stainless-steel welded pressure vessel, at 1.2 bar of N₂
- Surrounded by ~1000 tonnes of concrete/steel radiation shielding blocks

30 May 2006

Assumptions for 16.5 TeV HE-LHC

- Reuse existing tunnel and caverns
 - Same (similar) extraction trajectories in H & V
 - Similar kicker and septum angles
 - Maximum ~300 mm dilution sweep radius
- Similar quadrupole layout and optics
 - ▶ 2 matching quads in LSS per side of IP (Q4, Q5)

Extraction kickers for 16.5 TeV HE-LHC

- New design: reduce vertical opening and increase rise time
- Scaling kicker opening to $\sqrt{(450/1000)}$: 62 \rightarrow 42 mm
- ▶ Kicker magnetic gap $72 \rightarrow 52$ mm (vacuum chamber)

		LHC Nominal	HE Nominal
MKD V gap	mm	72	52
MKD rise time	us	3.00	5.10
MKD angle	mrad	0.27	0.27
MKD B.dl	Tm	6.3	14.9
MKD field	T	0.30	0.71
MKD peak field	T	0.41	0.95
MKD dl/dT	kA/us	6.17	6.17
MKD I	kA	18.5	31.5
MKD length	m	21.0	21.0
MKD Filling factor		0.761	0.761
MKD Required length	m	27.6	27.6
MKD magnets		15.0	15.0

- ▶ 15 magnets, 0.71 T and 31.5 kA: gives 5.1 us rise time
- Same installed kicker length
- R&D needed on high current switches and high current feedthroughs (19 -> 32 kA), but looks feasible

Dilution kickers and dump for 16.5 TeV

- ▶ Peak p+ density factor ~2.4 times higher
- Shower maximum further into dump block
- ▶ Total energy to dump ~500 MJ as for LHC ultimate
- Assume sweep length of 100 cm still OK
 - Effect of smaller beam size may not be an issue at the shower maximum
 - For beam dump block, would need full FLUKA study to analyse if extra dilution required from MKB kicker system
- Likely to require longer block with lower density, or at least different grading of carbon densities
- Longitudinal space exists in the UD caverns

Dilution kicker parameters

- ▶ 7 to 16.5 TeV requires 2.3 times more JB.dl
 - Already near saturation in iron → not possible to increase field per magnet
 - Apertures determined (to first order) by required sweep → not possible to reduce magnet gaps (maybe can optimise with two families per plane)
- Could keep same maximum Bdlbut increase frequency
 - ▶ 14 to 32 kHz, but increases dI/dt and hence V

Dilution kicker option I

Increase installed length keeping switch voltage at 30 kV

		LHC Nominal	HE Nominal
MKB frequency	kHz	14.0	14.0
MKB angle	mrad	0.27	0.27
MKB B.dl	Tm	6.3	14.9
MKB field	T	1.13	1.21
MKB peak field	T	1.52	1.63
MKB voltage	kV	26.70	28.60
MKB I	kA	25.0	26.8
MKB length (H+V)	m	11.2	24.6
MKB Filling factor		0.49	0.49
MKB Required length	m	22.9	50.3
MKB magnets		10	22

- ▶ Peak field increases to 1.63 T just about OK
- Needs 22 magnets (presently 10)
- ▶ Installed length increases to 50.3 m

Dilution kicker option II

Increase frequency, reducing kick angle

		LHC Nominal	HE Nominal
MKB frequency	kHz	14.0	28.0
MKB angle	mrad	0.27	0.135
MKB B.dl	Tm	6.3	7.4
MKB field	T	1.13	0.74
MKB peak field	T	1.52	0.99
MKB voltage	kV	26.70	34.96
MKB I	kA	25.0	16.4
MKB length (H+V)	m	11.2	20.2
MKB Filling factor		0.49	0.49
MKB Required length	m	22.9	41.1
MKB magnets		10	18

- Needs 18 magnets total (presently 10)
- ▶ Total installed length 40 m (presently 22.9)
 - Will have an impact on the aperture probably needs few types
- As magnets not saturated, gain with higher switch voltage
- Need to reach 35 kV

Dilution: Option II – increase frequency

Dilution kicker frequency increase x2 - sweep length 100 cm with spiral

Potential issues:

- Can only realistically build damped sinusoidal field (can't spiral outwards) so need to cross inner turn with start of the sweep
- Temperature profile and mechanical stresses in dump block to evaluate

Dilution system physical installation

▶ 10 magnets presently on extracted beam line in long drift space between IP (extraction septa) and Q4

Extraction septa

- ▶ 15 magnets, 4.5 m long each, to provide total of 2.4 mrad vertically
- Lambertson design
 - 3 types, 0.8, 0.99 and 1.17 T (septum 6, 12, 18 mm)
- ▶ Need to increase ∫B.dl by factor 2.35

Extraction septa parameters

- Use only type B and type C
 - Thinnest septum anyway not needed behind TCDS
- Increase field to maximum possible

		LHC Nominal	HE Nominal
MSD angle	mrad	2.4	2.4
MSD B.dl	Tm	56.0	132.0
MSD field	Т	0.84	1.06
MSD length	m	66.7	124.8
MSD Filling factor		0.916	0.916
MSD Required length	m	72.8	136.2
MSD magnets		15	28

- Total magnets/beam needed: 28 (14 B + 14 C)
- ▶ Total installed length is ~136 m (present 73 m)
 - Assume 32 m extra each side of IP6

28 Extraction septa in layout (R6)

Layout maybe just feasible – integration for protection devices and lattice quads?

Dump Protection devices

- Long (6 m), low density (C) absorbers intercept undiluted bunches
 - ▶ In front of septum (fixed) and in front of Q4 (mobile)
- Fixed 2.4 m steel mask in front of Q4
- Will be difficult for 16.5 TeV

16.5 T dump system outline

- ▶ 16.5 TeV dump system: does not look impossible in similar layout to present system
 - 5 μs kicker rise time (new magnet design with smaller gap) feasible
 - Increase septa ∫B.dl (x1.9 septa length, maybe gain by using more of MSDC type), seems feasible (integration?)
 - Increase dilution sweep length: higher f₀, needs more kickers OR SC dilution quadrupole plus kickers; integration
 - Upgrade dump block (longer, lower density), seems feasible
 - Upgrade protection devices; difficult (sacrificial?)

50 TeV beam dump

Key parameters:

- ▶ 50 TeV energy (x7 wrt LHC ultimate)
- ▶ 4.5 GJ stored energy (x8.5 wrt LHC ultimate)
- ▶ 1.5 um transverse emittance
- ▶ 264 us revolution period
- ▶ 1.34e11 p+/bunch

50 TeV extraction kickers

- ▶ Beam rigidity: 167 T.km
- Vertical gap of ~40mm (shielded, ~30 mm for beam)
- Current of 32 kA (30 kV switches)
- Gap field of 0.92 T (peak 1.23 T)
- 230 urad deflection with 30 kicker modules
- Installed length ~55 m (x2 wrt present LHC system)
- ▶ Rise time 5.1 us
- Can foresee closed orbit bump system at dump septum
 - Reduce kicker strength requirements
 - Slow system so easy to interlock
 - Possibly 5-10 mm deflection at 50 TeV

Extraction kickers

Extraction kicker parameters

		LHC Nominal	VHE-LHC
MKD V gap	mm	72	40
MKD rise time	us	3.00	5.10
MKD angle	mrad	0.27	0.23
MKD B.dl	Tm	6.3	38.4
MKD field	T	0.30	0.92
MKD peak field	T	0.41	1.24
MKD dl/dT	kA/us	6.17	6.17
MKD I	kA	18.5	31.5
MKD length	m	21.0	41.8
MKD Filling factor		0.761	0.761
MKD Required length	m	27.6	55.0
MKD magnets		15.0	30

50 TeV extraction kicker prefires

- Major concern for machine protection
- Seen once in LHC in 3.5 years of running luckily with only one pilot bunch at injection
- ~8 sigma deflection per module for VHE-LHC
 - Very messy with full beam at this amplitude
- Two options for mitigation
 - ▶ 1) Retriggering with minimum delay (LHC-like)
 - Assume 1 us retriggering delay, produces 'slow' asynchronous dump sweeep
 - > 2) add "antikicker" to trigger only by pre-trigger
 - ▶ Again with ~1 us turn-on delay
- Slowing down kicker rise time is advantage

50 TeV asynchronous dumps

- With some good design, pre-trigger of one module can be reduced to (almost) the same load case as an asynchronous dump
- Again, seen in LHC, but without beam
- → ~10x energy density (per swept mm) c.f. LHC
- Will rely on passive protection
 - In front of extraction septum
 - In front of next lattice quadrupole
 - In front of experiments
 - At impacted collimators
- Excellent optics control may allow clever design of diluter/sacrificial absorber to protect machine
- Also rare event (kicker design and surveillance)
- Splitting kickers further could also help (x60??)

50 TeV extraction septa

Around 2 mrad angle at 50 TeV needs 330 Tm!

Scaled-up present LHC system would work...although at least 350 m needed in lattice

Options to explore would be:

- Long sequence of normal conducting septa (thin, thick Lambertson, open C-core dipole). Cannot save much in length.
- Superconducting septa (not really any issue if they quench with passage of dumped beam)?
- Hybrid SC extraction lattice quadrupoles, with passage for extracted beam, ideally providing dipole field for additional deflection?
- Make problem easier with "slim" lattice SC quads?

50 TeV dilution system

- 4.5 GJ in 264 us
- Need to increase dilution sweep length from present LHC ~100 cm to around 700 cm
 - for same peak energy density per swept linear mm
- ▶ 12 kHz frequency, sweep length becomes ~750 cm in 264 us, with 2 km drift
- ▶ Assume same nominal/peak field of 1.13/1.5 T
- Switch voltage then becomes 23 kV (from 27!)
 - Magnets already close to saturation can't increase
- ▶ Installed length increased by x7, to ~160 m
 - No impact on lattice, as all are in dump line
- Sweep diameter ~110 cm (3 turn spiral)

Dilution

Dilution kicker system parameters

		LHC Nominal	VHE-LHC
MKB frequency	kHz	14.0	12.0
MKB angle	mrad	0.27	0.27
MKB B.dl	Tm	6.3	45.1
MKB field	T	1.13	1.15
MKB peak field	T	1.52	1.55
MKB voltage	kV	26.70	23.40
MKB I	kA	25.0	25.6
MKB length (H+V)	m	11.2	78.4
MKB Filling factor		0.49	0.49
MKB Required length	m	22.9	160.0
MKB magnets		10	70

Dump block at 50 TeV

- Need ~2 km drift from dilution kickers to develop sweep
- ▶ Inner core ~1.5 m diameter, 10-15 m length?
- Thermal stresses need careful evaluation
- ▶ 4.5 GJ/8 h is about 150 kW average power....
- C? Or sthg more radical: pressurized water? ice?

50 TeV dump system outline

- ▶ ~60 m, 0.2 mrad extraction kicker (before QD)
- ▶ 5-10 mm closed orbit bump at septum
- ▶ 5-6 us abort gap (not much gain to make longer)
- Antikicker for pre-trigger mitigation?
- Passive/sacrificial septum protection
- Extraction septum could be area for studies
 - SC septum?
 - Combined lattice SC quadrupole/septum?
 - "Slim" SC lattice quadrupole?
 - ~350 m of warm septum???
- Dilution system: 33 kHz, 160 m of kickers
 - Investigate more elegant options (if we think of any!)
- ▶ 2 km drift to Ø1.5 m x 10 m CfC dump block?

Summary

▶ 16.5 TeV dump system in present LHC tunnel

- Extension of present system seems feasible
- New extraction kickers, more septa, more diluters
- Robustness of protection devices dumps likely to be an issue, but seen in LHC Run 1 to be 'rare' events.

▶ 50 TeV dump system for VHE-LHC

- ▶ It will be a monster (~3 km long from kicker to dump?)
- Think about best approach for septum maybe SC?
- However we design them, passive protection devices will likely be sacrificial, ...
- Dump block thermal loading to look at in detail

Potential R&D directions

- High-current switches and feedthroughs
 - > 30 kA needed for VHE-LHC extraction kickers
- High voltage, high current, fast turn-on solidstate switches
- SC septa
- Combined SC quadrupole/septum
- "Slim" SC quadrupoles
- Sacrificial protection devices
- Alternative dilution methods
- Beam dump materials/concepts/energy deposition

fin

Temperature rise in dump block

Temperature profile through dump block at Z=250 cm

Peak energy deposition along dump block length

Temperature profile along sweep path at Z=250 cm

Dump protection – difficult with increasing E

._____

Peak GeV/cc in Cu vs beam size at 450 GeV ad 7 TeV

- Low density to avoid material damage
- More total material required to dilute energy density
- Very long objects as a result...
 - ...reduces apertures for extracted beam
 - Or use sacrificial absorbers exchange after (hopefully rare) impacts with high intensity
- ▶ 10^7 dilution factor, need ~16 λ_r of C 1.8 g/cc, or ~6 m at 7 TeV
- For 10^7 at 16.5 TeV, need ~0.6 0.8 g/cc to avoid damage \Rightarrow 14-16 m
- Some optimisation with graded density to get more λ_r

(Extra) dilution with SC quad in dump line?

- Present betas: 4-5 km
- Add quadrupole to reach about 12 km beta, to get similar sigmas
 - ▶ Need 6 m @ 100 T/m, ~100 mm full aperture
- ▶ Orbit : 4 mm \Rightarrow 45 urad \Rightarrow ~30 mm at dump (650 m drift).
 - ▶ Maybe slightly larger absorber block size and dump line : $\emptyset \approx 0.8$ m
- Integration likely to be an issue upstream of diluter kickers