

parameters of LHeC in the 80-km tunnel "*TLHeC*" and "*VHE-TLHeC*"

Frank Zimmermann

Joint Snowmass-EuCARD/AccNet-HiLumi LHC meeting 'Frontier Capabilities for Hadron Colliders 2013'

21 February 2013

work supported by the European Commission under the FP7 Research Infrastructures project EuCARD, grant agreement no. 227579

LHeC Conceptual Design Report

DRAFT 1.0 Geneva, September 3, 2011 CERN report ECFA report NuPECC report LHeC-Note-2011-003 GEN

LHeC CDR published in J. Phys. G: Nucl. Part. Phys. 39 075001 (2012)

http://cern.ch/lhec

A Large Hadron Electron Collider at CERN

Report on the Physics and Design Concepts for Machine and Detector

LHeC Study Group THIS IS THE VERSION FOR REFEREEING, NOT FOR DISTRIBUTION

LHeC Study Group

J. Abelleira Fernandez^{10,15}, C.Adolphsen³⁹, S.Alekhin⁴⁰,¹¹, A.N.Akai⁰¹, H.Aksakal³⁰, P.Allport¹⁷, J.L.Albacete³⁷ V.Andreev²⁵, R.B.Appleby²³, N.Armesto³⁸, G.Azuelos²⁶, M.Bai⁴⁷, D.Barber¹¹, J.Bartels¹², J.Behr¹¹, O.Behnke¹¹, S.Belyaev¹⁰, I.BenZvi⁴⁷, N.Bernard¹⁶, S.Bertolucci¹⁰, S.Bettoni¹⁰, S.Biswal³², J.Bluemlein¹¹, H.Boettcher¹¹, H.Braun⁴⁸, S.Brodsky³⁹, A.Bogacz²⁸, C.Bracco¹⁰, O.Bruening¹⁰, E.Bulyak⁰⁸, A.Bunyatian¹¹, H.Burkhardt¹⁰ I.T.Cakir⁵⁴, O.Cakir⁵³, R.Calaga⁴⁷, E.Ciapala¹⁰, R.Ciftci⁰¹, A.K.Ciftci⁰¹, B.A.Cole²⁹, J.C.Collins⁴⁶, J.Dainton¹⁷, A.De.Roeck¹⁰, D.d'Enterria¹⁰, A.Dudarev¹⁰, A.Eide⁴³, E.Eroglu⁴⁵, K.J.Eskola¹⁴, L.Favart⁰⁶, M.Fitterer¹⁰, S.Forte²⁴, P.Gambino⁴², T.Gehrmann⁵⁰, C.Glasman²², R.Godbole²⁷, B.Goddard¹⁰, T.Greenshaw¹⁷, A.Guffanti⁰⁹ V. Guzey²⁸, C.Gwenlan³⁴, T.Han³⁶, Y.Hao⁴⁷, F.Haug¹⁰, W.Herr¹⁰, B.Holzer¹⁰, M.Ishitsuka⁴¹, M.Jacquet³³, B.Jeanneret¹⁰, J.M.Jimenez¹⁰, H.Jung¹¹, J.M.Jowett¹⁰, H.Karadeniz⁵⁴, D.Kayran⁴⁷, F.Kocac⁴⁵, A.Kilic⁴⁵, K.Kimura⁴¹, M.Klein¹⁷, U.Klein¹⁷, T.Kluge¹⁷, G.Kramer¹², M.Korostelev²³, A.Kosmicki¹⁰, P.Kostka¹¹ H.Kowalski¹¹, D.Kuchler¹⁰, M.Kuze⁴¹, T.Lappi¹⁴, P.Laycock¹⁷, E.Levichev³¹, S.Levonian¹¹, V.N.Litvinenko⁴⁷, A.Lombardi¹⁰, C.Marquet¹⁰, B.Mellado⁰⁷, K.H.Mess¹⁰, S.Moch¹¹, I.I.Morozov³¹, Y.Muttoni¹⁰, S.Myers¹⁰, S.Nandi²⁶, P.R.Newman⁰³, T.Omori⁴⁴, J.Osborne¹⁰, Y.Papaphilippou¹⁰, E.Paoloni³⁵, C.Pascaud³³, H.Paukkunen³⁸ E.Perez¹⁰, T.Pieloni¹⁵, E.Pilicer⁴⁵, A.Polini⁰⁴, V.Ptitsyn⁴⁷, Y.Pupkov³¹, V.Radescu¹³, S.Raychaudhuri²⁷, L.Rinolfi¹⁰, R.Rohini²⁷, J.Rojo²⁴, S.Russenschuck¹⁰, C.A.Salgado³⁸, K.Sampei⁴¹, E.Sauvan¹⁹, M.Sahin⁰¹, U.Schneekloth¹¹, A.N.Skrinsky³¹, T.Schoerner Sadenius¹¹, D.Schulte¹⁰, H.Spiesberger²¹, A.M.Stasto⁴⁶, M.Strikman⁴⁶, M.Sullivan³⁹, B.Surrow⁰⁵, S.Sultansoy⁰¹, Y.P.Sun³⁹, W.Smith²⁰, I.Tapan⁴⁵, P.Taels⁰², E.Tassi⁵², H.Ten.Kate¹⁰, J.Terron²², H.Thiesen¹⁰, L.Thompson²³, K.Tokushuku⁴⁴, R.Tomas.Garcia¹⁰, D.Tommasini¹⁰, D.Trbojevic⁴⁷, N.Tsoupas⁴⁷, J.Tuckmantel¹⁰, S.Turkoz⁵³, K.Tywoniuk¹⁸, G.Unel¹⁰, J.Urakawa⁴⁴, P.VanMechelen⁰², A.Variola³⁷ R.Veness¹⁰, A.Vivoli¹⁰, P.Vobly³¹, R.Wallny⁵¹, G.Watt¹⁰, G.Weiglein¹², C.Weiss²⁸, U.A.Wiedemann¹⁰, U.Wienands³⁹, F.Willeke⁴⁷, V.Yakimenko⁴⁷, A.F.Zarnecki⁴⁹, F.Zimmermann¹⁰, F.Zomer³³

About 150 Experimentalists and Theorists from 50 Institutes Tentative list Thanks to all and to CERN, ECFA, NuPECC

~600 pages

LHeC Higgs physics

- precision coupling measurements $(Hb\overline{b}, H\gamma\gamma, H4I,...)$
- reduction of theoretical QCD-related uncertainties in pp Higgs physics
- potential to find new physics at the cleanly accessible WWH (and ZZH) vertices

parameter [unit]	LHeC				
species	<i>e</i> [±]	<i>p</i> , ²⁰⁸ <i>Pb</i> ⁸²⁺			
beam energy (/nucleon) [GeV]	60	7000, 2760			
bunch spacing [ns]	25, 100	25, 100			
bunch intensity (nucleon) [10 ¹⁰]	0.1 (0.2), 0.4	17 (22), 25 eter			
beam current [mA]	6.4 (12.8)	360 (21 10), 6			
rms bunch length [mm]	0.6 hod P	75.5			
polarization [%]	90 (et 155e)	none, none			
normalized rms emittance [μ m]	50	3.75 (2.0), 1.5			
geometric rms emittance [m]	0.43	0.50 (0.31)			
IP beta function (* , am)	0.12 (0.032)	0.1 (0.05)			
IP rms shot size [µm]	7.2 (3.7)	7.2 (3.7)			
synchrotron tune	-	0.0019			
hadron beam-beam parameter	0.0001 (0.0002)				
lepton disruption parameter D	6 (30)				
hourglass reduction factor H _{hg}	0.91 (0.67)				
pinch enhancement factor H_D	1.35 (0.3 for <i>e</i> ⁺)				
luminosity/ nucleon [10 ³³ cm ⁻² s ⁻¹]	1 (10), 0.2				

LHeC ERL layout

two 10-GeV SC linacs, 3-pass up, 3-pass down; 6.4 mA, 60 GeV e⁻'s collide w. LHC protons/ions

possible long-term strategy for HEP

& e^{\pm} (120 GeV) – p (7, 16 & 50 TeV) collisions ([(V)HE-]TLHeC) \geq 50 years of $e^{\pm}e^{-}$, pp, ep/A physics at highest energies

parameters for TLHeC & VHE-TLHeC (e- at 120 GeV)

collider parameters	TLHeC		VHE-TLHeC		
species	e [±]	p	e [±]	p	
beam energy [GeV]	120	7000	120	50000	
bunch spacing [μs]	3	3	3	3	
bunch intensity [10 ¹¹]	5	3.5	5	3.5	
beam current [mA]	24.3	51.0	24.3	51.0	
rms bunch length [cm]	0.17	4	0.17	2	
rms emittance [nm]	10,2	0.40	10,2	0.06	
$\beta_{x,y}$ *[cm]	2,1	60,5	0.5,0.25	60,5	
σ _{x,y} * [μm]	15,	,4	6	, 2	
beam-beam parameter ξ	0.05, 0.09	0.03,0.01	0.07,0.10 🤇	0.03,0.007	
hourglass reduction	0.6	53	0.	42	
CM energy [TeV]	1.8		4.9		
luminosity [10 ³⁴ cm ⁻² s ⁻¹]	0.5		1.6		

Kinematics at HE-TLHeC

M. Klein

Kinematics at VHE-TLHeC

M. Klein

Kinematics at VHE-TLHeC

M. Klein

scaling is

$$L \propto \frac{1}{E_e^4} \propto \frac{1}{E_{CM}^8}$$

assuming that we adjust emittance optics (or wigglers) to keep emittance constant

maybe it is better to run at E_e=60 GeV like LHeC?

parameters for TLHeC & VHE-TLHeC (e⁻ at 60 GeV)

collider parameters	TLHeC		VHE-TLHeC		
species	e [±]	p	e [±]	p	
beam energy [GeV]	60	7000	60	50000	
bunch spacing [μs]	0.2	0.2	0.2	0.2	
bunch intensity [10 ¹¹]	5	3.5	5	3.5	
beam current [mA]	390	51.0	390	51.0	
rms bunch length [cm]	0.18	4	0.18	2	
rms emittance [nm]	10, 2	0.40	10, 2	0.06	
$\beta_{x,y}$ *[cm]	2, 1	60, 5	0.5, 0.25	60,5	
σ _{x,y} * [μm]	15, 4		6, 2		
beam-beam parameter ξ	0.10, 0.18	0.03,0.01	0.14, 0.20	0.03,0.007	
hourglass reduction	0.63		0.42		
CM energy [TeV]	1.3		3.5		
luminosity [10 ³⁴ cm ⁻² s ⁻¹]	8.	0	2!	5.6	

distance scales resolved in lepton-hadron scattering experiments since 1950s, and some of the new physics revealed

future lepton-proton scattering facilities

VHE-TLHeC

kinematic plane in Bjorken-x and resolving power Q^2 , showing the coverage of fixed target experiments, HERA, LHeC and VHE-**TLHeC**

another advantage of TLHeC and VHE-TLHeC:

e⁺p collisions at the same luminosity as e⁻p!

this is very challenging for LHeC

conclusions

TLEP & VHE-LHC or (HE-)LHC bring VHE-TLHeC or TLHeC e[±]p collisions "for free"

2-3 orders of magnitude in Q² and x beyond HERA and 1-2 orders of magnitude beyond LHeC

running at different e⁻ energies together with TLEP operation modes

glorious history of deep inelastic scattering

1911 discovery of atomic nucleus, by Ernest Rutherford

1950's discovery of structure of nuclei and nucleons, by Robert Hoffstadter

1966-1978: discovery of the quark, by Richard Taylor, Henry Kendall, and Jerome Friedman

next Nobel Prize at LHeC or VHE-TLHeC!?

... and a last argument for the VHE-TLHeC

appendix:

LEP2, LHEC, LEP3 & TLEP parameters

LEP3/TLEP parameters -1 $\frac{\text{soon at SuperKEKB:}}{\beta_x^*=0.03 \text{ m}, \beta_Y^*=0.03 \text{ cm}}$

	LEP2	LHeC	LEP3	TLEP-Z	TLEP-H	TLEP-t	
beam energy Eb [GeV]	104.5	60	120	45.5	120	175	
circumference [km]	26.7	26.7	26.7	80	80	80	
beam current [mA]	4	100	7.2	1180	24.3	5.4	
#bunches/beam	4	2808	4	2625	80	12	
#e-/beam [10 ¹²]	2.3	56	4.0	2000	40.5	9.0	
horizontal emittance [nm]	48	5	25	30.8	9.4	20	
vertical emittance [nm]	0.25	2.5	0.10	0.15	0.05	0.1	
bending radius [km]	3.1	2.6	2.6	9.0	9.0	9.0	
partition number J_{ϵ}	1.1	1.5	1.5	1.0	1.0	1.0	
momentum comp. α_{c} [10 ⁻⁵]	18.5	8.1	8.1	9.0	1.0	1.0	
SR power/beam [MW]	11	44	50	50	50	50	
β* _x [m]	1.5	0.18	0.2	0.2	0.2	0.2	
β* _v [cm]	5	10	0.1	0.1	0.1	0.1	
σ* _x [μm]	270	30	71	78	43	63	
σ* _v [μm]	3.5	16	0.32	0.39	0.22	0.32	
hourglass F _{hg}	0.98	0.99	0.59	0.71	0.75	0.65	
ΔE ^{SR} loss/turn [GeV]	3.41	0.44	6.99	0.04	2.1	9.3	
SuperKEKB:ε _v /ε _x =0.25%							

LEP2 was not beam-

	LEP2	LHeC	LEP3	TLEP-Z	TLEP-H	TLEP-t
V _{RF,tot} [GV]	3.64	0.5	12.0	2.0	6.0	12.0
δ _{max,RF} [%]	0.77	0.66	5.7	4.0	9.4	4.9
ξ_x/IP	0.025	N/A	0.09	0.12	0.10	0.05
ξ _v /IP	0.065	N/A	0.08	0.12	0.10	0.05
f _s [kHz]	1.6	0.65	2.19	1.29	0.44	0.43
E _{acc} [MV/m]	7.5	11.9	20	20	20	20
eff. RF length [m]	485	42	600	100	300	600
f _{RF} [MHz]	352	721	700	700	700	700
δ ^{SR} _{rms} [%]	0.22	0.12	0.23	0.06	0.15	0.22
σ ^{SR} _{z,rms} [cm]	1.61	0.69	0.31	0.19	0.17	0.25
<i>L</i> /IP[10 ³² cm ⁻² s ⁻¹]	1.25	N/A	94	10335	490	65
number of IPs	4	1	/	/)	/
Rad.Bhabha b.lifetime [min]	360	N/A	18	74	32	54
Υ _{BS} [10 ⁻⁴]	0.2	0.05	9	4	15	15
n _v /collision	0.08	0.16	0.60	0.41	0.50	0.51
ΔE^{BS} /collision [MeV]	0.1	0.02	31	3.6	42	61
ΔE^{BS}_{rms} /collision [MeV]	0.3	0.07	44	6.2	65	95
critical SR energy [MeV]	0.81	0.18	1.47	0.02	0.43	1.32

LEP data for 94.5 - 101 GeV consistently suggest a beam-beam limit of ~0.115 (R.Assmann, K. C.)