

MPI Support in Int.EU.Grid: Open MPI, PACX-MPI, MPI-Start, Marmot

Kiril Dichev

HLRS, Stuttgart

3rd EGEE User Forum, 11.-14. February 2008 Clermont-Ferrand, France

MPI Support

Overview

- Open MPI
 - ► HIgh-performance MPI-2 implementation
- □ PACX-MPI
 - ► MPI between clusters
- MPI-Start
 - ► A layer for starting MPI processes (EGEE and I2G)
- Marmot
 - ► MPI application checking tool

Open MPI

Open MPI Who is MPI?

Founders

- ► High Performance Computing Center, Stuttgart
- ► Indiana University
- ► Los Alamos National Laboratory
- ► The University of Tennessee
- Current status
 - ▶ 15 Members
 - ▶ 9 Contributors
 - ▶ 1 Partner

Open MPI Project Goals

- Stat- of-the-art MPI implementation
 - ► Full support of the MPI-2 standard
 - ► Avoidance of old legacy code
 - ► Profit from long experience in MPI implementations
 - ► Avoiding the "forking" problem
 - Community / 3rd party involvement
 - Production-quality research platform
 - Rapid deployment for new platforms

Open MPI Design Goals

- Component architecture
- Design for heterogeneous environments
- Multiple networks (run-time selection)
- Support for automatic error detection / retransmission
- Portable and performant
 - Small cluster
 - ► "Big iron" hardware
 - ► Grids

Open MPI

Modular Component Architecture

■ MCA top level view

Open MPI

Requirements

- The orte daemons need an open TCP/IP Port for incoming connections
- Different requirements for the different PLS
- ssh requires login without password (e.g. public keys)
- software installation
 - ► Open MPI needs to be installed on the
 - WN
 - CE (for PACX-MPI runs)

PACX-MPI

PACX-MPI Overview

- □ A middleware to seamlessly run MPI applications on a network of parallel computers (originally dev. in 1995 to connect Vector+MPP).
- PACX-MPI is an optimized standard-conforming MPIimplementation, applications just need recompilation(!)
- □ For C: pre-processor renaming: MPI_Send becomes PACX_Send.
- ☐ For Fortran: Function replacement @ link-step.

PACX-MPI

Overview

- PACX-MPI starts an MPI job in each cluster
- PACX-MPI "merges/manages" these MPI jobs internally and emulate transparently a bigger MPI job to the application

PACX-MPI

Usage

- Compiling with PACX
 - pacxcc -c hello.c
 - pacxcc -o hello hello.o
- Running requires 2 additional processes:

MPI-Start

MPI-Start Goals

☐ Goals of mpi-start:

- ► Define a unique interface to the upper layer for MPI jobs
- ► Support of a new MPI implementation doesn't require any change in the Grid middleware
- Support of file distribution
- ► Provide some support for the user to help manage his data.

Grid Middleware

MPI-START

MPI's/Schedulers

MPI-StartDesign Goals

Design Goals

- ► Portable
 - The program must be able to run under any supported operating system
- Modular and extensible architecture
 - Plugin/Component architecture
- ► Relocatable
 - The program must be independent of absolute path, to adapt to different site configurations.
 - Remote "<u>injection</u>" of mpi-start along with the job
- ► Very good "remote" debugging features

MPI-StartArchitecture

MPI-Start int.EU.grid status

- Support of
 - ► MPI on a single cluster
 - ► MPI on multiple clusters (with PACX-MPI)
 - different schedulers
 - different file distribution mechanisms
 - different MPI tools (Marmot)
- ☐ Plugins being developed together with EGEE

MPI-Start in I2G and EGEE

- ☐ Current version 0.0.58
 - ► tested and verified in I2G
 - ► Also available in ETICS for EGEE

Marmot Integration in Grids

Marmot Overview

- MPI checking tool for MPI errors at runtime
- Developed in the frame of CrossGrid
- No source code modification required (only recompilation or dynamic reordering of search paths)
- One additional process working as debug server
- Implementation of C and Fortran language binding of MPI-1.2 standard

Marmot Architecture

- Marmot currently includes static and dynamic libraries
- □ The usage of dynamic libraries allows the user to immediately(!) use Marmot by:
 - specifying an extra flag
 - adding an extra process
 - specifying the output log file
- Technical details are done by MPI-Start:
 - ► Environment variables are set for intercepting MPI calls
 - ► Marmot output file information is set as expected

An example JDL file for using Marmot:

```
JobType
               = "openmpi";
NodeNumber
                  = 5:
VirtualOrganisation = "imain";
Executable
               = "cg-tutorial-marmot-exercise";
StdOutput
               = "cg-tutorial-marmot-exercise.out";
StdError
              = "cg-tutorial-marmot-exercise.err";
InputSandbox
                 = {"cg-tutorial-marmot-exercise"};
OutputSandbox
                  = {"cg-tutorial-marmot-exercise.out", "cg-tutorial-marmot-
exercise.err","MarmotLog.txt"};
Environment = {"I2G_USE_MARMOT=1"};
Requirements = other.GlueCEUniqueID == "ce-ieg.bifi.unizar.es:2119/jobmanager-lc
```


Marmot Log File (1)

75: Error from rank 9(Thread: 0) with Text:

ERROR: MPI_Type_struct: datatype [0] is Fortran-Type!

```
array_of_types[0] = MPI_INTEGER;
array_of_types[1] = MPI_LONG_LONG_INT;
```


Marmot Log File (2)

64: Warning from rank 5(Thread: 0) with Text:

WARNING: MPI_Type_struct: blocklength[0] = 0!

array_of_blocklengths[0] = 0;

Marmot Log File (3)

103: Note from rank 7(Thread: 0) with Text:

NOTE: MPI_Type_commit: Datatype already committed!

MPI_Type_commit(&sendtype);

MPI_Type_commit(&sendtype);

Questions?

