

Enabling Grids for E-sciencE

Analysis of Metagenomes on the EGEE Grid

Gabriel Aparicio

<u>Ignacio Blanquer</u>

Vicente Hernández

Valencia University of Technology

(Universidad Politécnica de Valencia)

www.eu-egee.org

Topic summary

- Introduction
 - Definitions and objectives.
 - Case studies.
- Metagenomic Analysis System
 - Design and Deployment.
 - Automation.
- Results and Performance.
- Conclusions and Future Plans.

Enabling Grids for E-science

Introduction

Definitions

- A metagenome is a collection of genes which can be studied as a single gene without isolating them.
- A Metagenome Analysis is the group of necessary steps to transform a file of a coded metagenome into another file with some interest information.
- This can include:
 - Database filtering.
 - BLAST alignments.
 - BLAST output filtering.
 - Creation of Phylogenetic Trees.

Enabling Grids for E-science

Introduction

- Why Grid is a Good Solution?
 - A Metagenome can be coded into several hundred of thousand sequences.
 - Sequential time can take more than a year.
 - Public databases are continuously changing.
 - Several steps can be done in parallel.
- In a Grid, the global job can be divided into subjobs.
 - A Metagenome Analysis can be processed in a few days with a Grid Infrastructure.

Enabling Grids for E-science

Introduction

Objectives

- Evaluate and validate the EGEE Grid infrastructure to develop the analysis of a large metagenome.
- Develop a framework to perform multiple alignment and phylogenetic analysis for metagenomes.
 - Efficient and "infrastructure"-friendly.
 - Fault tolerant (jobs and output).
 - Semi-automatic.
- Operate this framework for several large experiments

Case Studies - Biological

Enabling Grids for E-sciencE

Farm Soil

- A sample from a nutrient-rich and moderately contaminated soil environment.
 - This community is very diverse and complex.
 - Many yet unknown enzymes are probably present there.

Whale Fall

- Sample from a whale carcass.
 - They are known to be a nutrient-rich environment in the bottom of the ocean.
 - A heterogeneous mixture of bacteria flourish there.

Sargasos's Sea

- Oceanic samples taken from surface waters.
 - They represent the diversity of bacteria that live planktonically

Case Studies – Medical

Gut Metagenomes

- Several metagenomes of the human intestinal microbiota.
- A consortia of bacteria that helps its host to metabolize many nutrients that would be indigestible otherwise.
- It is involved in other functions
 - Maturation and modulation of the immune response of the host.
 - Prevention of infection by bacterial pathogens.

Deployment

Stages and Components

- Pre-processing
 - Data filtering, splitting and replication.
- Submission and monitoring
 - Submission and re-submission components.
 - Parallel and sequential processing engines (BLAST, mpiBLAST).
- Results retrieval
 - Output Transfer.
 - Post-processing.

Deployment - Data

Selecting SEs and Replicating Files

- All jobs need certain common files.
 - A filtered nr database with sequences from procaryotic species.
- These files have to be replicated to increase performance and to distribute network bandwidth.
- SEs hosting is located according to their geographical and administrative closeness to the selected CEs, their performance and their configuration.
- 12 Replicas have been made.

Deployment – CEs

Sequential or parallel BLAST kernels?

- There are around 122 CEs in BIOMED VO.
- There are only around 30 CEs able to run MPICH jobs.
- The number of CEs decreases when the number of required nodes increases.
- Full efficiency in MPICH jobs is achieved occasionally.
- About 1000 CPUs for MPI jobs and About 17000 for Sequential Jobs.

Deployment - CEs

Selecting CEs

- Not all available CEs are able to produce results.
- Not all available CEs have the same performance.
- CEs need to be selected to distribute jobs according to their performance.

Deployment – Filtered CEs

Enabling Grids for E-sciencE

Selecting CEs

- Even Removing the CEs Producing Errors, there are Temporary Errors that Affect Almost any CE.
- In an Experiment Involving only those CEs, 41,2 % Were Successful in its first Execution and 58,8% of the Jobs Needed to be Resubmitted
 - 25,4% Were Aborted due to Unspecified Error (Error While In CondorG Queue).
 - 11,1% Were Aborted due to Errors with the Catalogue (lcg-cp Mainly, and Sometimes lcg-cr).
 - 9,4% Were Aborted due to the Expiration of the Proxy (VOMS Credentials are Limited to 168 hours).
 - 7,0 % Were Aborted due to Authentication Errors (Globus Error 7).
 - 3,7% Were Aborted due to JobWrapper Errors (Cannot read JobWrapper output, both from Condor and from Maradona).
 - 2,3% Were Cancelled due to Excessive Waiting Time.

Deployment – Job Splitting

Enabling Grids for E-sciencE

Splitting global job

- The global job has to be broken down into subjobs
 - The number of jobs depends on the number of input sequences and the desired individual average duration.
- The subjob lifetime will decrease
 - Increase interactivity.
 - Improve monitoring capabilities.

Automation – Job Submission

Enabling Grids for E-sciencE

Submitting Jobs

- Subjobs are assigned to a list of CEs
- These CEs have been tested.
- Assignation is done according to obtained performances in previous experiments.

Monitoring

- Periodically, jobs status are monitored.
- In case of errors (aborted job, bad results, etc.), the job is automatically resubmitted.
- In case the job is running too long, the job is cancelled and resubmitted.
- In case the job has finished successfully, its CEs is saved for later submissions.

Automation

Resubmitting Jobs

- Each correctly finished job saves its CEs and puts it into a list.
- The jobs are resubmitted to a random CE of this list.
- If the list does not exist, the job is submitted to the same CE.

Retrieving Results

- Once results are available, they are downloaded and the standard outputs are explored to find any error.
- A retrieved job is no longer monitored.

Job Splitting and Automation

Enabling Grids for E-sciencE

Re-submission List

CE₁

CE 2

Results and Performances

Enabling Grids for E-sciencE

- Jobs are too long to run sequentially
 - Sargasso Sea Metagenome takes 512 days.
- The same job in Grid takes 13 days to be fully finished.
 - Speedup is around 40.
- High speed for most jobs (90% in 7 days)
 - Speedup is around 80.
 - No needed to finish all jobs to begin with new stages.

Results and Performances

Enabling Grids for E-sciencE

Correctly finished jobs percentage

Results and Performances

Enabling Grids for E-sciencE

Sequences processed per hour

Future plans

- To create several shell-scripts with different stages depending on the desired results
 - Cross-analysis of metagenomes, e.g.
- To deal with new case studies
 - 17 Metagenome Studies have been Processed so Far (About 10 CPU Years).
- To improve automation performances
 - Improve the selection of resources.
 - Improve the resubmission mechanism.

Conclusions

- The EGEE grid has demonstrated to be a successful tool for metagenomic analysis.
- Metagenomic analysis involves several steps that require intensive computation
 - There are many different experiments that can be defined and are not currently performed due to its cost.
- The results obtained are successful and relevant from the users' point of view.

Vicente Hernández / Ignacio Blanquer / Gabriel Aparicio

Universidad Politécnica de Valencia

Camino de Vera s/n

46022 Valencia, Spain

Tel: +34-963879743

Fax. +34-963877274

E-mail: vhernand@dsic.upv.es

iblanque@dsic.upv.es

gaparicio@itaca.upv.es