

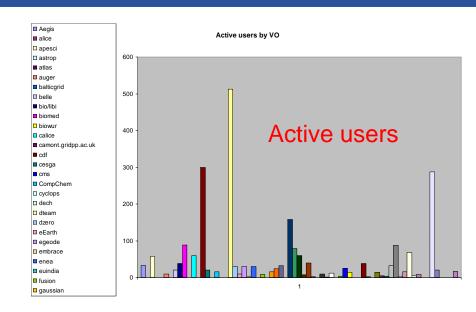
VO-level application support in EGEE

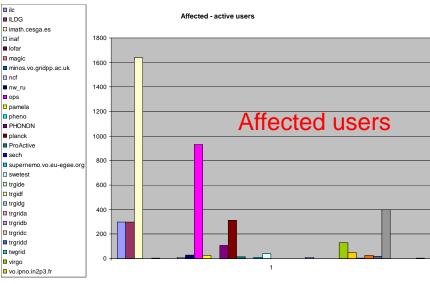
Andrea Sciabà

3rd EGEE User Forum 11-14 February 2008 Clermont-Ferrand

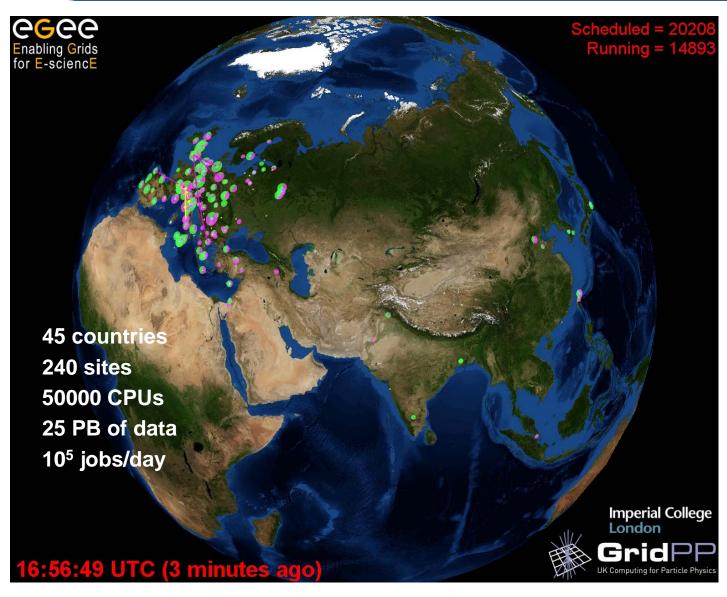
www.eu-egee.org

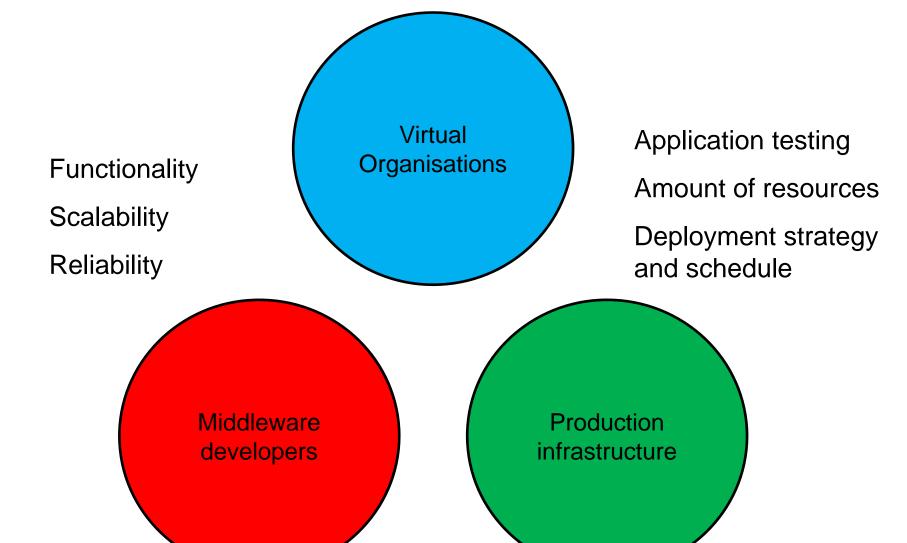
Enabling Grids for E-science


Introduction


- What is VO support?It can mean several things
 - Provide expertise for development
 - Application porting
 - Application-Grid interface development
 - User tools, utilities
 - Middleware testing
 - User support
 - GGUS
 - Provide support for operations
 - Help debugging problems with sites and services
 - Participate to VO-specific Grid operations
 - Provide training and documentation
 - GILDA, UIG, NA3

Virtual Organisations in EGEE


- EGEE users come from about 100 Virtual Organisations
 - Astronomy & Astrophysics
 - Computational Chemistry
 - Earth Sciences
 - Fusion
 - High Energy Physics
 - Life Sciences
 - Condensed Matter Physics
 - Computational Fluid Dynamics
 - Computer Science
 - Finance
- Active users are about 8000, 22000 users benefit from the work done on the EGEE Grid



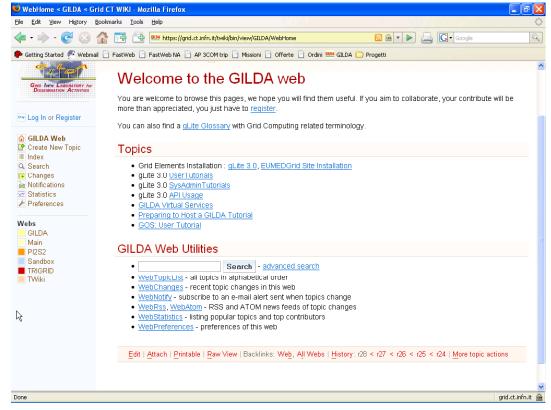
EGEE infrastructure

Basic VO relationships

VO interactions with EGEE

- Technical Coordination Group
 - 4 LHC VO representatives, Biomed, NA4, developers, sites, certification and operations
- VO managers coordination group
 - Generic VO support
- Specifically for the Worldwide LHC Computing Grid:
 - Management Board
 - Supervision and planning
 - Grid Deployment Board
 - Agreements between VOs and sites, information exchange
 - EIS team
 - Daily support for LHC VOs
 - Task forces
 - To address very specific technical issues

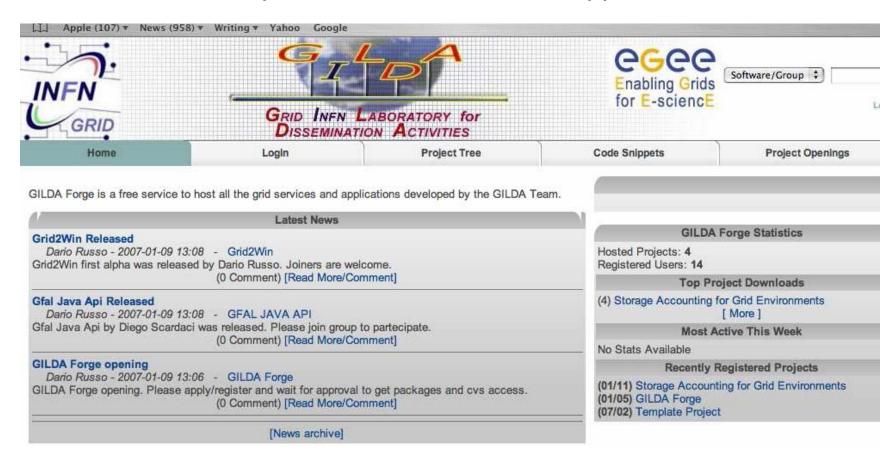
VO support in NA4


- Typically, lack of <u>dedicated</u> support
 - VOs are expected to participate actively in user support via the Global Grid User Support
 - But non VO-specific support to users is guaranteed by GGUS
- NA4 though provides high-level support for the VO management
 - Mostly via the VO Managers group
 - Help to start a new VO
 - Effort in this area should improve in EGEE3
 - Main tool: CIC Portal (https://cic.gridops.org/)
- Application porting support
 - Grid Application Support Centre (GASuC)
 - See Gergely's talk

The GILDA Training Material

Enabling Grids for E-sciencE

- A vast collection of material
 - 100+ topics for users, site managers, developers
 - Plenty of exercises
 - Difficulty levels: basic, medium, advanced


(https://grid.ct.infn.it/twiki/bin/view/GILDA/WebHome)

Training on application development: the GILDA Forge

Code repository to share

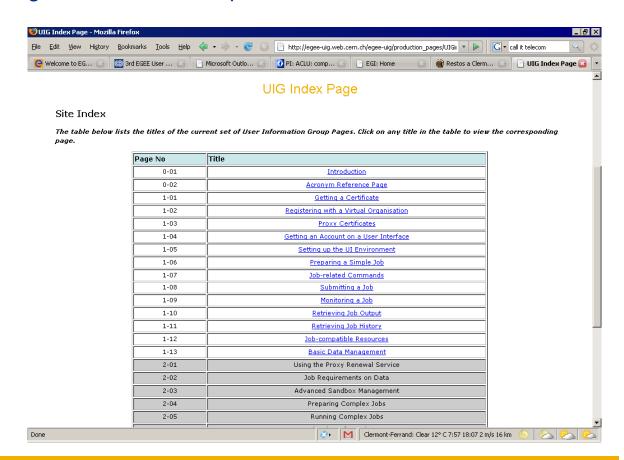
- Examples, exercises
- Actual development for demonstrative applications

GGUS portal

Enabling Grids for E-sciencE

Documentation

[Documentation for Grid Users] - [VO-related documentation] - [Documentation for TPM] - [Documentation for Grid Site Administrators] - [Middleware documentation] - [Users]


Documentation for Grid Users	
Description of the DLI interface:	http://edms.cern.ch/document/572489
The Grid Dictionary If you are confused by all Grid acronyms, you can search this grid dictionary for an explanation	http://www.eu-egee.org/introduction/EGEEGLOSSARY/
gLite 3.0 User Guide	https://edms.cern.ch/document/722398
The AFS grid UI at CERN	https://twiki.cern.ch/twiki/bin/view/LCG/AfsUiUserSetup
VO-related documentation	
VO BOX description, appendix E.3 of LCG User Guide	https://edms.cern.ch/file/454439//LCG-2-UserGuide.html#SECTION0001430000000000000000
VOBOX HowTo for the ALICE VO	http://alien.cern.ch/twiki/bin/view/AliEn/HowToInstallLcgVoBox
VOBOX HowTo for all other VOs	http://goc.grid.sinica.edu.tw/gocwiki/VO-box_HowTo

User Information Group

(http://www.cern.ch/egee-uig)

- The UIG is a service for users to provide
 - Documentation
 - Contacts, links to sites, access to user support
 - Information about training, tutorials, workshops, etc.
- Docs as "use cases"
 - Beginner
 - Normal
 - Skilled users

User support in CMS

Jump

Edit | WYSIWYG | Attach | PDF |

r187 - 08 Feb 2008 - 11:08:32 - CMSUse

Enabling Grids for E-sciencE

CMS

CIMS Homepage

CIUS Twiki

Changes Index

Search

Offline Workbook

Glossary/Index

Summary of Changes

Site Map

Print as PDF For Contributors

User Support

oser auphorr

Offline SW Guide Reference Manual

Online WkBk

ESSENTIALS

Preface

- 0.1 Acknowledgements
- 0.2 Using the Workbook

1. Getting Started

- 1-1 Introduction
- 1.2 Get an Account
- 1.3 Set Computing Env
- 1.4 CMS Computing
- 1.5 Resources/Info
- 1.6 First visit to CERN.

2. Basics of Offline

- 2.1 Introduction
- 2.2 Goals & Detector
- 2.3 Computing Model
- 2.4 CMSSW
- Framework

You are here: TWiki > I CMS Web > WorkBook

The CMS Offline WorkBook

Complete:

In two sections: Essentials and Advanced Topics

Tutorial Overview: Click here!

ESSENTIALS

Preface

- 0.1 Acknowledgements
- 0.2 Using the Workbook
- . 0.3 Information for Contributors

Chapter 1: Getting Started

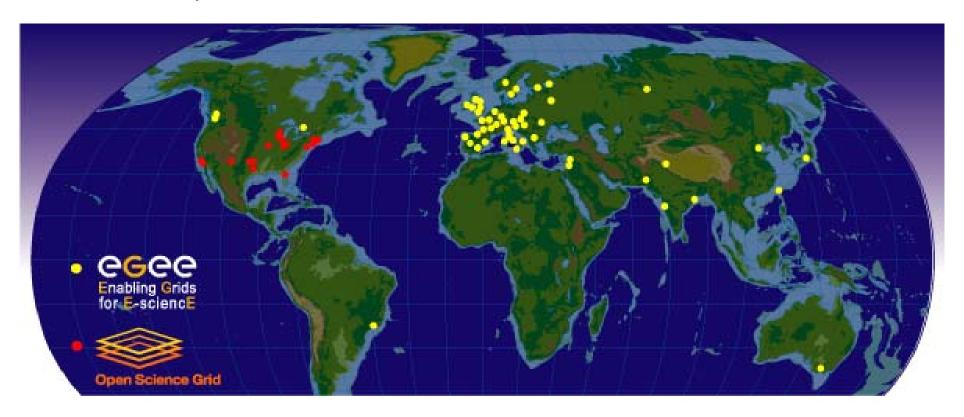
- 1.1 Introduction
- 1.2 Getting a Computing Account
- 1.3 Setting up your Computing Environment
- . 1.4 CMS Computing Concepts: Programming, CVS, etc.
- 1.5 Useful Resources and Vital Information
- 1.6 On your First Visit to CERN

Chapter 2: The Basics of CMS Offline Computing

Purpose

The CMS offline workbook provides backgrou information and initial instruction on accessin computing resources and using the software perform analysis within the CMS collaboration Organized into Essentials and Advanced Topsections, it is designed as the first-stop for bousers and software developers. This workbooks Reference Manual and the CMS Offline Guide together, are intended to form a comprehens of documentation for CMS data analysis.

Search


Newsbox:

09 January 08: The yearly WorkBook print rwill take place in Jan-Feb 08, the contents a currently being reorganized, and the print to page is not yet up-to-date.

Worldwide LHC Computing Grid

Enabling Grids for E-sciencE

- WLCG depends on two major Grid infrastructures
 - EGEE
 - US Open Science Grid

A map of the worldwide LCG infrastructure operated by EGEE and OSG.

VO support for LHC

Experiment Integration Support (EIS) team

- Born in 2002 with the LHC Computing Grid project
- ~10 members, all high energy physicists
- Funded by CERN and INFN

EIS main goals

- Helping the four LHC experiments (ALICE, ATLAS, CMS, LHCb) in Grid-related issues
- Acting as interface between the experiments and WLCG
- Not only for HEP: also Biomed and other VOs

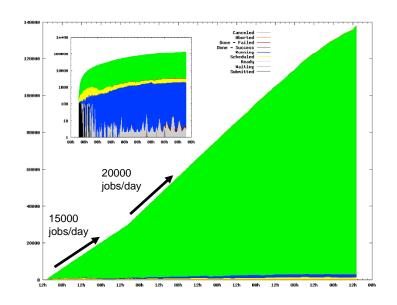
ARDA team

- Devoted to development for the experiments (and not only!)
 - Monitoring dashboard, GANGA, Diane, AMGA, ...

VO support tasks (I)

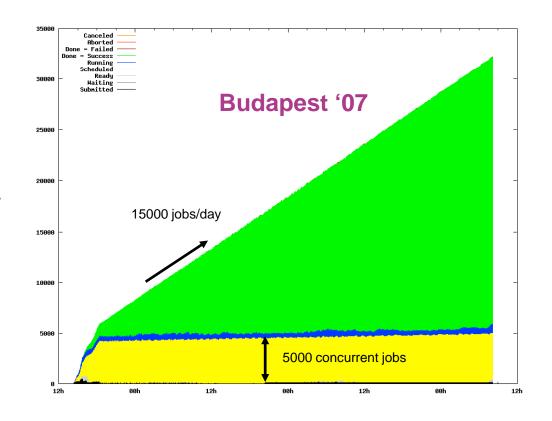
- Integration and testing
 - Evaluation of middleware functionality
 - Identify possible shortcomings
 - Middleware scalability testing
 - Determine if the middleware meets the application scale requirements

Middleware testing


- Testing the middleware against the VO use cases should start well before it is released to production
- Noteworthy examples
 - gLite Workload Management System
 - CREAM Computing Element
- HEP experiments currently have the most demanding performance requirements, therefore provide the most stringent criteria for middleware testing

Examples

Testing the gLite WMS


- ATLAS and CMS requirements
 - ~50,000 jobs/day in 2007
 - ~200,000 jobs/day in 2008
 - High reliability of the job management system
 - Very few downtimes
 - No performance degradation with time
- Was the gLite WMS up to to the task?
 - Intensive testing activity by the EIS team, JRA1, SA3
 - Lots of problems initially found, eventually fixed
- Now the WMS is routinely used for both Monte Carlo and analysis jobs
 - Stable at 20,000 jobs/day

Testing the CREAM CE

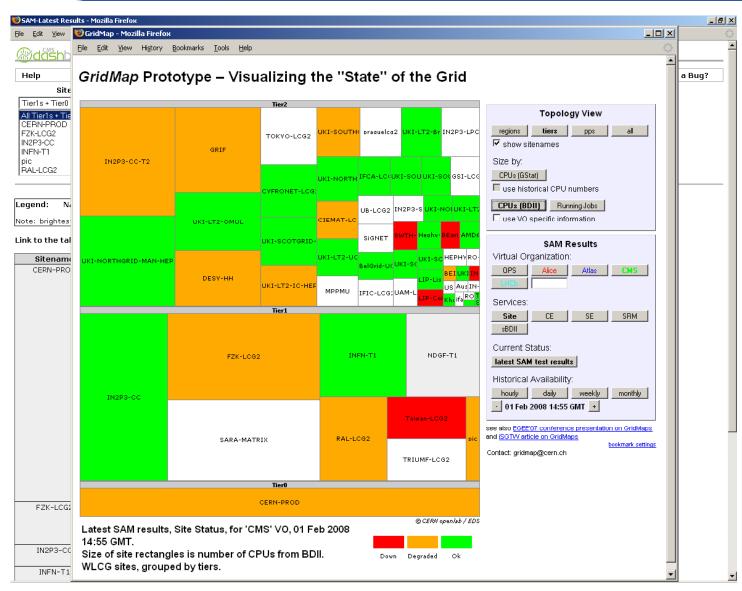
- The same test methodology was applied to see if the prototype of the CREAM Computing Element satisfied the scalability requirements for a CE in WLCG
- Test criteria
 - Submission via WMS at a 10000 jobs/day rate
 - > 5000 concurrent jobs
 - At least 5 days of uninterrupted testing
 - Stable system
- The criteria were eventually met

VO support tasks (II)

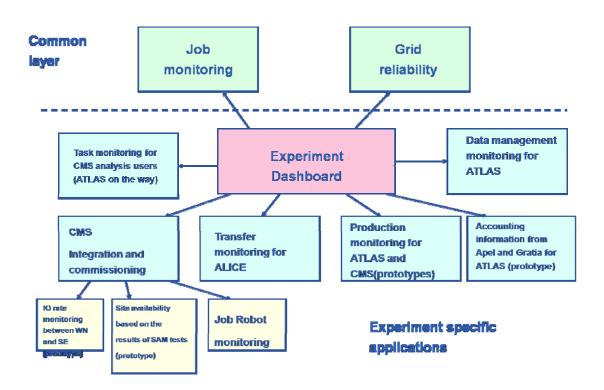
- Development of missing components
 - User tools that can be reused by other VOs
 - and can help "power users" in developing Grid interfaces

Examples

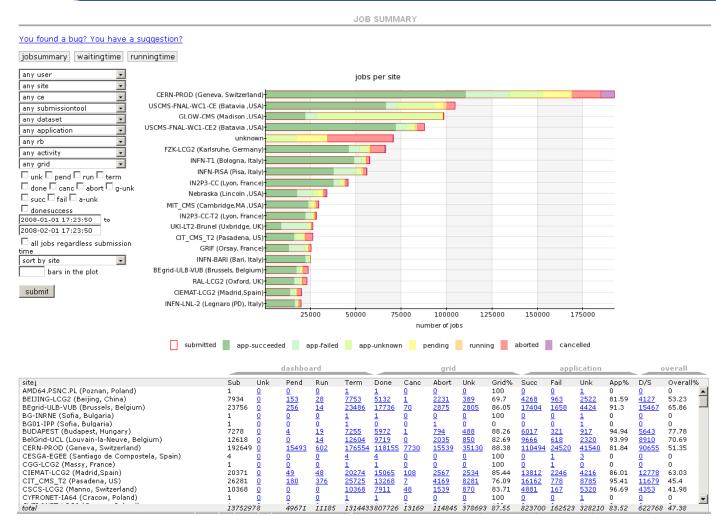
VO monitoring


- VOs need to have the full picture of the Grid status...
 - Grid services
 - VO-specific services
- ... and to know how they are doing on the Grid
 - Job status, success/failure statistics
 - Status of data transfers
- Exactly at the boundary between the application and the Grid domain
- Examples from the LHC computing:
 - Usage of the Service Availability Monitoring (SAM) for VOspecific service monitoring
 - ARDA dashboard to monitor the experiment workflows

- Adapting to the applications the SAM framework, used by EGEE Grid operations to monitor the site status
 - Define specific tests for different aspects
 - VO software installation, VO services and processes, etc.
 - Produce an adequate GUI, or integrate in an existing one
- What can SAM provide?
 - Calculation of service availability/reliability
 - Alarms
 - Overall status of the Grid from the VO point of view


SAM monitoring displays

Dashboard


- A common project to provide monitoring pages for the LHC experiments
- Different purposes in mind
 - Global view of Grid jobs
 - Status of user analysis tasks
 - Status of data transfers
 - **–** ...

Interactive job monitoring

Enabling Grids for E-sciencE

(also used by the VL-eMed VO at NIKHEF)

Tool development

 Often VO support involves development of software to fill the gap between the Grid middleware and the applications

GANGA

- A framework for job definition and management
- Supports several back-ends (local, batch, Condor-G, gLite WMS and many others) in a totally transparent way
- Used by lots of applications (ATLAS, LHCb, telecommunications, QCD, Biomed, etc.)
 - Ideal for many "gridification" activities

VO Box

- A service to host VO-specific services
- Provides several Grid utilities
 - gLite User Interface, proxy renewal service, GSI-ssh login

VO support tasks (III)

Enabling Grids for E-sciencE

Operations and user support

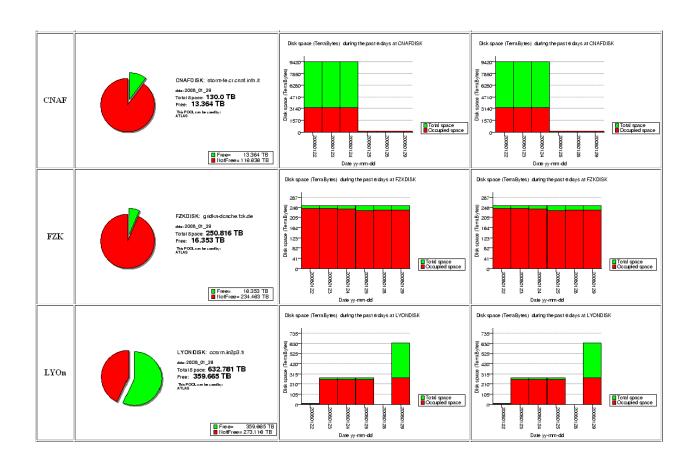
- Help the VO with running the "production"
 - Manage Grid and VO-specific services
- Provide documentation if missing
 - gLite User Guide (started as the "LCG" User Guide)
- If necessary, contribute to end user support

Problem solving

- Provide expertise for understanding and solving Grid-related issues
 - Site problems (misconfigurations, etc.)
 - Middleware problems (bugs)
- Easier with a deep knowledge of both the Grid middleware and the VO computing system

Supporting ALICE

- A complete monitoring was developed for ALICE and Grid services running at sites
 - Test Grid services (Proxy renewal, GSI-sshd, Resource Broker, etc.)
 - Test ALICE software installation
- Output integrated with SAM and with ALICE monitoring

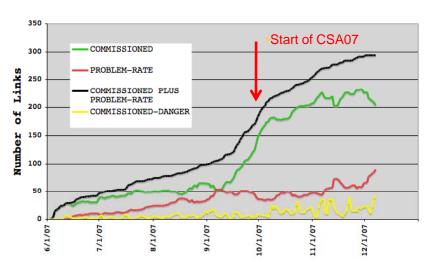

			SAM To	ests				
							What i	s this about
Site	Delegated proxy duration	Proxy of the machine		Proxy Server Registration		Software area	User Proxy Registration	WMS Stats
1. Athens	unknown	unknown	unknown	unknown	unknown	unknown	unknown	unknown
2. Bari	ОК	ок	OK	ок	ок	OK	oĸ	ОК
3. Birmingham	ОК	ок	OK	ОК	ОК	OK	OK	ОК
4. Bologna	ОК	ок	ок	ок	ок	OK	ок	ок
5. CCIN2P3	unknown	unknown	unknown	unknown	unknown	unknown	unknown	unknown
6. CERN-L	ок	ок	ок	ок	ок	OK	ок	ок
7. CERN_gLite	ОК	ок	OK	ОК	ОК	OK	OK	
8. CNAF	ОК	ок	ок	ок	ок	OK	ок	WARNING
9. Cagliari	OK	OK	OK	OK	OK	OK	OK	
10. Catania	OK	OK	OK	OK	OK	OK	OK	WARNING
11. Clermont	OK	OK	OK	OK	OK	OK	OK	OK
12. Cyfronet	OK	OK	OK	OK	OK	OK	OK	OK
13. FZK	OK	ОК	OK	OK	ОК	OK	OK	OK
14. GRIF_DAPNIA	OK	OK	OK	OK	OK	OK	unknown	ERROR
15. GSI	OK	OK	OK	OK	OK	OK	OK	
16. IHEP	ОК	ОК	OK	OK	ОК	OK	OK	ERROR
17. IPNO	OK	ОК	OK	ОК	ОК	OK	unknown	
18. ITEP	OK	OK	OK	ОК	OK	OK	OK	ERROR
19. JINR	ок	ок	ок	ок	unknown	OK	ок	unknown
20. KFK I	ОК	ок	ок	ок	ок	ОК	ок	ок
21. KISTI	ERROR	ок	OK	ОК	ОК	OK	ERROR	

No	SiteName	Node Name	Status	alice									
140	Sitevanie	NodeName		SA	UPR	PR	PSR	ssh	PM	DPD	RBS	gsc	WMS
	Asia Pacific												
1	GOG-Singapore	soursop.ngpp.ngp.org.sg	NA	na	na	na	na	na	na	na	na	error	na
2	IN-DAE-VECC-01	grid.tier2-kol.res.in	ERROR	<u>ok</u>	error	<u>ok</u>	<u>ok</u>	na	<u>ok</u>	error	error	error	<u>ok</u>
3	KR-KISTI-GCRT-01	vobox.gridcenter.or.kr	ERROR	<u>ok</u>	error	<u>ok</u>	<u>ok</u>	па	<u>ok</u>	error	<u>ok</u>	na	warn
(CERN												
4	CERN-PROD	lxb7281.cern.ch	ок	<u>ok</u>	<u>ok</u>	<u>ok</u>	<u>ok</u>	na	<u>ok</u>	<u>ok</u>	<u>ok</u>	na	<u>ok</u>
-	CERN-PROD	voalice03.cem.ch	OK	ok	ok	ok	ok	na	<u>ok</u>	<u>ok</u>	<u>ok</u>	na	warn
5	CERN-I ROD			_	_	_	_						
	CentralEurope			_									
		grid156.kfki.hu	OK	<u>ok</u>	<u>ok</u>	<u>ok</u>	<u>ok</u>	na	<u>ok</u>	<u>ok</u>	<u>ok</u>	na	<u>ok</u>
	CentralEurope	grid156.kfki.hu ares01.cyf-kr.edu.pl	OK OK			<u>ok</u>	<u>ok</u>	na na	<u>ok</u> <u>ok</u>	<u>ok</u> <u>ok</u>	ok ok	na <u>error</u>	<u>ok</u> <u>ok</u>
6	CentralEurope BUDAPEST			<u>ok</u>	<u>ok</u>	_	_		_				_
6 7	CentralEurope BUDAPEST CYFRONET-IA64	ares01.cyf-kr.edu.pl	ОК	<u>ok</u> <u>ok</u>	ok ok	<u>ok</u>	<u>ok</u>	na	<u>ok</u>	<u>ok</u>	ok	error	<u>ok</u>

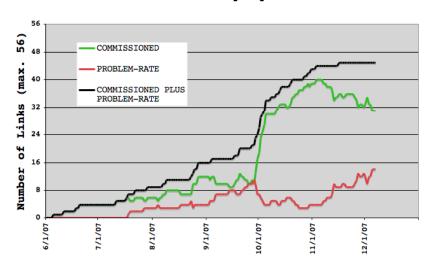
Supporting ATLAS

 Reliable calculation of the used and free space at all storage elements in ATLAS sites

Supporting CMS


COMMISSIONED LINKS

The problem


 How to make sure that data transfers between pairs of CMS sites can be performed as required

The solution

- Periodically perform test data transfers between all relevant site pairs ("links")
- Declare "commissioned" only the links that satisfy minimum criteria
- Decommission links that consistently fail
- In the process, track and document common problems

COMMISSIONED T[01]-T1 LINKS

Supporting LHCb

Enabling Grids for E-sciencE

- The goal
 - A <u>redundant</u> and reliable File catalogue service for LHCb based on LFC
 - A system that best matches the LHCb use cases
- Implementation
 - a master LFC at CERN and mirrored replicas at Tier-1 sites using Oracle Streams
- Several technical aspects to consider
 - Coherence of data and access control
 - Latency in the propagation of updates
- VO support team contributed to the project
 - Definition of the solution
 - Functionality and stress tests
 - Readiness of sites

The distributed LHCb file catalogue was deployed in time for the currently ongoing combined computing challenge (CCRC'08)

LFC mirrors. Last update Wed Feb 6 15:39:05 2008											
LFC instance	CERN-Master	CERN-RO	<u>CNAF</u>	<u>ral</u>	IN2P3	SARA	PIC	FZK			
Stress Test	<u>100 %</u>	<u>100 %</u>	<u>100 %</u>	<u>100 %</u>	100 %	Not available	Not available	Not available			
Replication Test	1	1	<u>1</u>	<u>1</u>	<u>1</u>	Not available	Not available	Not available			

Lessons learnt from the LHC support

- Large Virtual Organisations like the LHC experiments needed a dedicated support from WLCG
 - From people coming from the experiments themselves
- Very often the work primarily done for the LHC VOs has been or can be useful to others
 - Middleware testing (gLite WMS, CREAM, ...)
 - Dashboard, Ganga/DIANE, ...
 - gLite User Guide
 - Service Availability Monitoring for VO monitoring
- Also the expertise has been made available to other VOs
 - Gridification
 - Biomed support

Conclusions

- An adequate support for VOs is essential for an efficient usage of the EGEE (or any) production Grid
 - Allow VOs to interact with all components of the project
 - Allow VO members to have access to training and documentation
 - Provide support for application porting
 - Encourage the usage of high level tools
 - A lot of work done for LHC experiments could be reused by other VOs "for free"
 - Real VO-specific support will have to come from the VOs