
E ti Ti P di tiExecution Time Prediction
of Imperative Paradigm

T k f G id S h d liTasks for Grid Scheduling
Optimization

Lai Weng Kin Yap Yee JiunLai Weng Kin, Yap Yee Jiun,
Maleeha Kiran, *Lim Mei Kuan

13 February 2008

1

3

b i
SUPER COMPUTING POWER

t ll t th ti

brings
to all sectors across the nation

Industrial Sector Government
Sector

Agriculture Sector International
Community

5

Research Community Financial Sector Public Sector Business & Enterprise
Sector

Benefits RealizationBenefits Realization

Collaborative Platform across the sectorsCollaborative Platform across the sectors
enableenablereducereduceaggregate andaggregate and enable

Knowledge
sharing

enable
Knowledge

sharing
Total Cost of

Ownership (TCO)
Total Cost of

Ownership (TCO)

aggregate and
improve

efficiency of ICT

aggregate and
improve

efficiency of ICT

Bio-
researchers

Structural
designers

i l t t

Animation
industry

(G th

Doctors
predict

Bankers
perform
fi i l &

Command
Center
f t l

Cyber
police

itdiscover
new drugs

simulate stress
environment

(Geng the
Movie)

cancer
growth

financial &
risk
analysis

for natural
disaster-
alerts public

monitors
national
borders

6

System ViewSystem View

K l GRID M l i b it h t th idKnowlegeGRID Malaysia website hosts the grid
portal which allow user to utilize Grid System

7

KnowledgeGRIDKnowledgeGRID

Unified
Gateway

Computing Hardware &
ApplicationsGateway Applications

Middleware

Grid Computing is a form of distributed system where
computing resources are shared across networks

8

Prediction Module Prediction Module ––
Area in Grid ComputingArea in Grid Computing

Our work fits in the area of resource
management.

Prediction module that estimates the
execution time of jobs to assist in grid

scheduling.
9

Resource Management in GridResource Management in Grid

Lyon
Middleware

Resource Brokers

BQS (JM)

ldap

Globus
GRAM

Nodes
(CE)

jdl

Interrogation LSF (JM)

CERNJob
Submission

UI
Response

LSF (JM)

ldap

user

Data
Storage

(SE)

Information
Catalog

PBS (JM)

NKHE
F

10

ldap

Resource Management in GridResource Management in Grid

• Upon submission, user specify the resources
needed to run job using Job Description Language
(JDL).

• Resource broker finds resources that fits user’s
requirements through the information catalogue,
negotiate with grid-enabled resources, schedule
tasks to specified resources and deploy the
applicationapplication.

• Finally, the resource broker gathers results and
t th treturn them to users.

Analogy of Problem Analogy of Problem
StatementStatement

Burger Stall 1 Burger Stall 2 Burger Stall 3 Burger Stall 4g
(2 Cooks)

g
(1 Cook)

g
(3 Cooks)

g
(2 Cooks)

2 Burgers 5 Burgers 50 Burgers 1 Burger

2 Burgers
15 Burgers 1 Burger

1 Burger

3 Burger

11

Problem StatementProblem Statement

R1R1 R2 R2
R3 R4 R4R1R1

J1

R2

J1

R3

J1

R4 R4

J1

J2

J2

J2

J3

J2
Which queue provides the shortest Which queue provides the shortest

waiting time?? waiting time??
Ideal to know the execution time of Ideal to know the execution time of

each job beforehandeach job beforehand
J3

J4

jj

12

Prediction Prediction
M d lM d lModuleModule

User
submits job

13

Prediction Prediction
M d lM d lModuleModule

Predicted

A
P

I
A

P
I

Predictor Predictor
completion

time
ModuleModuleUser

submits a
job

14

Prediction Prediction
M d lM d lModuleModule

Predicted
completion time

15

System ArchitectureSystem Architecture

Time Completion Calculator This engine analyses the
length and complexity in order
to compute the estimated timeStatistical

Database
Prediction Module

Complexity Analyzer From the tokens, the length
and complexity is measured

Statistical Adaptive Module

C d E l ti E i
Metric Analyzer

Grammar Parser Breaks down and counts

and complexity is measured.Code Evaluation Engine

Lexical Tokenization

Keyword Counter

Breaks down and counts
number of operators,
operands and branches. The
input is broken into tokens.

File Parser

It is used to categorize
program according to type.
Currently only handles R

Parser Module Loader

Application Selector Incoming Job

16

Currently only handles R
program.Application Classifier

Application Selector Incoming Job

Start

Classify incoming jobs

Process Flow Process Flow
of the Prediction Moduleof the Prediction Module

Load appropriate file parser

of the Prediction Moduleof the Prediction Module

Tokenize file into smaller units

Count the number of operators, operands and
functions

Understand the program structure

Analyze the complexity of the program

Calculate the completion time of the entire
program

Benchmarked data
program

Output the predicted
completion time

End

17

System ArchitectureSystem Architecture

• The proposed architecture is a blend of static analysis, analytical
benchmarking and compiler-based approach Not based on historicalbenchmarking and compiler-based approach. Not based on historical
data.

• Factors affecting the choice of techniques used in the proposed
system:system:

• R! programs do not have an identifiable pattern which can be
studied to make predictions regarding future incoming job.

R! ft b l t th it ll i it• R! software belongs to the open source community, allowing its
code to be freely available and is not bounded by confidentiality
agreement .

Th R li ti i t f t ti ti l t ti d• The R application is a system for statistical computation and
graphics, involving complex algorithms and computations.

18

Handling ComplexityHandling Complexity

Our approach to handling complexity in programs is adapted from three
general rules:general rules:

1. lines of codes (LOC),

2. distinct operators and operands as discussed by Halstead and

3. nesting depth as discussed by McCabe.

As most non-trivial programs predominantly consist of nested
conditional statements or iterations, we focus on handling the
complexity of nested loops to improve the prediction accuracy

f th d lof the module.

20

Sample Nested LoopsSample Nested Loops
for(k in 1:100) { #1

cat (“\n Loop k: ”, k);
for(i in 1:100) { #2for(i in 1:100) { #2

cat (“\n Loop i: ”, i);
for(j in 1:100) { #3

• As the level of nesting
grow, the computational

cat (“\n Loop j: ”, j);
} #3
for(j in 1:100) { #4

grow, the computational
step increases as well.

• The complexity increases
h i d h

for(j in 1:100) { #4
cat (“\n Loop j: ”, j);

} #4
cat (“\n Loop i: ” i);

as the nesting depth
increases.

cat (\n Loop i: , i);
} #2
cat (“\n Loop k: ”, k);

21

} #1

Handling ComplexityHandling Complexity
1. Break down the nested loops into separate blocks identified by the

start line and end line.

2. Compute the execution time, starting with the innermost loop, p , g p,
followed by its parent loop. Repeat until the outermost loop is
reached.

3. One iteration of the parent loop includes the complete number of p p p
iterations of the child loop.

4. Represented by the following simplified equation:

()()
()

∑ ∏∏
−

+Δ+Δ⎥
⎤

⎢
⎡1l lm

tPnnN ()()∑ ∏∏
= ==

+Δ+Δ⎥
⎦

⎢
⎣

=
1 1

1
1m j

ljm
i

i tPnnN

Where,,
N = total completion time

l = the time taken between the start of
one loop and the successive loop

P(t) = the amount of time needed to

22

P(t1) = the amount of time needed to
execute the innermost loop.

Implementation EnvironmentImplementation Environment

• The execution time of a program can often vary significantly from
one execution to the next on the same system. This is becauseone execution to the next on the same system. This is because
computers do not simply execute one program at a time. (dedicated
environment)

• The execution time of one program varies more significantly when itThe execution time of one program varies more significantly when it
is run across different platform. This is due to the different
specifications of each machine that leads to wide variation in execution
time.

• Therefore, all tasks beginning with benchmarking operands and functions
to getting the actual executing time are all done using the same machine.

• Similar to other historical-data based prediction, the proposed prediction p p p p
module is machine-dependent. However, the proposed architecture
allows cross-platform prediction to be made with relative ease as only
the benchmarked scripts need to be run on the different machines.

23

Implementation EnvironmentImplementation Environment

• CPU: AMD Athlon 848 (2x2 Core)

• Operating System: CentOS 4.4

• CPU Speed: 3200 GHz

RAM 2048 MB• RAM 2048 MB

• Development of Prototype: Java, Eclipse version 3.2.2 as the IDE.

• Database: MySQL Server version 5.y Q

• The proposed prediction module run on a unix-based environment
and is wrapped around an API implementation.

The API was developed using Java Server Page• The API was developed using Java Server Page.

24

Testing and EvaluationTesting and Evaluation

Two main criteria were used when testing the prediction
module:

1. Component / Functionality Test2. Accuracy of Prediction Test

• Throughout the phases, the prediction module was
inserted with output statement to allow display of tokenized • Expected to provide an accuracy prediction of 80%, under
version of the script.

• The output also allows display of complexity of nested loops
and conditional statements.

• All outputs is suppressed after the testing phase

a Normal Distribution.
• In the Normal Distribution, 68% of the sampling lies within
the first standard deviation.

• All outputs is suppressed after the testing phase.

24

Testing and EvaluationTesting and Evaluation

The mathematical formula to compute accuracy:

Accuracy Error = %100×
− actualestimated TTAccuracy Error = %100×
− actualestimated TT

Example:

Testimated : 100 days
T 110 d

actualT

Accuracy = 100% - Accuracy Error

actualT

Accuracy = 100% - Accuracy Error

Tactual : 110 days

Accuracy error = (110 – 100) / 110 * 100 = 9.09 %

Acc rac = 100 9 09 = 90 91%

Where,

Accuracy = 100 – 9.09 = 90.91%

Hence, we can say that this is a successful estimation as the accuracy
of prediction is 90.91%, which is more than 80% (threshold goal).

Testimated : Time that was estimated by the prediction module
Tactual : Actual execution time Under Normal Distribution with one sigma of error,

for a total sample of 100 test cases,

25

the prediction module should be able to predict > 68 jobs with >80%.

Testing and EvaluationTesting and Evaluation

•At this phase, a total of 60 R! scripts were taken at random as the
test casestest cases.

• The estimated time to run each of these 60 test cases was predicted
using the wrapper developed.

• The predicted time was then compared with the actual execution time• The predicted time was then compared with the actual execution time
for each job.

• Only predicted time that falls within the range of 80%-120% of the
actual execution time is considered successful.

26

Summarized Result of Testing PhaseSummarized Result of Testing Phase

Accuracy Chart

20

25

30

10

15

20

C
ou

nt

Series1

0

5

90-100 % 80-89 % 70-79% 60-69% 50-59% 40-49% 30-39% 20-29% 10-19% 0-9% less than
0%

accuracy

Graphical Representation of Result

28

Graphical Representation of Result

ConclusionConclusion

• The test results meets the threshold goal of the project.

• Successful as a proof of concept though it is limited to predicting• Successful as a proof of concept, though it is limited to predicting
the execution time of programs written using R! only.

• A solution to this problem will lead to improvement in advance
h d li f ll ti ll h t th t itischeduling for resource allocation as well as hasten the transition

of the research-driven grids to commercial grids.

• There are still limitations and constraints that can be further
refined in the later stage of the project.

29

LimitationsLimitations

• Machine-dependent, platform specific. Benchmarked scripts will
have to be run on each machine to obtain the benchmarked
execution time.

• Does not cover programs written using the object-oriented
programming language such as Java and data-feed orientedprogramming language such as Java and data feed oriented
programs such as Blast.

• Dedicated environment. Assumed that jobs will not be pre-empted
or interrupted by other jobsor interrupted by other jobs.

• At this phase, our work focus on programs written using R!
software. However the architecture, methods and process applied are

fl ibl h t b d t d d li d t th j b ittflexible enough to be adapted and applied to other jobs written

in various imperative paradigm.

29

Future Work Future Work -- In EGEE ContextIn EGEE Context

• The results will be used as a stepping-stone to investigate the
building of similar modules for applications being used by EGEE
users.

• To offer users a facility to predict execution time of jobs and toy p j
express this as a requirement when submitting their jobs to the
Grid.

•To assist the Workload Manager to efficiently distribute and
manage Grid resources for incoming jobs.

29

Future WorkFuture Work

• The prediction module should be tested and evaluated for jobs other than
R in the near future.

• To improve the efficiency of the prediction, this approach could be
refined to handle while loops and dynamic number of iterations.

• Aside from that the benchmarking approach could be refined or extended• Aside from that, the benchmarking approach could be refined or extended
further to increase the accuracy of prediction.

‘The computing field is always in need of new clichés’
-Alan Perlis-

29

Thank YouThank You
By: Lim Mei KuanBy: Lim Mei Kuan

lim.mkuan@mimos.mylim.mkuan@mimos.my
+60 12 633 7702+60 12 633 7702

