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System ViewSystem View

K l GRID M l i b it h t th idKnowlegeGRID Malaysia website hosts the grid 
portal which allow user to utilize Grid System
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Grid Computing is a form of distributed system where
computing resources are shared across networks
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Prediction Module Prediction Module ––
Area in Grid ComputingArea in Grid Computing

Our work fits in the area of resource 
management.

Prediction module that estimates the 
execution time of jobs to assist in grid 

scheduling.
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Resource Management in GridResource Management in Grid

• Upon submission, user specify the resources 
needed to run job using Job Description Language 
(JDL).

• Resource broker finds resources that fits user’s 
requirements through the information catalogue, 
negotiate with grid-enabled resources, schedule 
tasks to specified resources and deploy the 
applicationapplication.

• Finally, the resource broker gathers results and 
t th treturn them to users.
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Problem StatementProblem Statement
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System ArchitectureSystem Architecture

Time Completion Calculator This engine analyses the 
length and complexity in order 
to compute the estimated timeStatistical 

Database
Prediction Module

Complexity Analyzer From the tokens, the length 
and complexity is measured

Statistical Adaptive Module

C d E l ti E i
Metric Analyzer

Grammar Parser Breaks down and counts

and complexity is measured.Code Evaluation Engine

Lexical Tokenization

Keyword Counter

Breaks down and counts 
number of operators, 
operands and branches. The 
input is broken into tokens.

File Parser

It is used to categorize 
program according to type. 
Currently only handles R

Parser Module Loader

Application Selector Incoming Job
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Start

Classify incoming jobs

Process Flow Process Flow 
of the Prediction Moduleof the Prediction Module

Load appropriate file parser

of  the Prediction Moduleof  the Prediction Module

Tokenize file into smaller units

Count the number of operators, operands and 
functions

Understand the program structure

Analyze the complexity of the program

Calculate the completion time of the entire 
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completion time
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System ArchitectureSystem Architecture

• The proposed architecture is a blend of static analysis, analytical 
benchmarking and compiler-based approach Not based on historicalbenchmarking and compiler-based approach. Not based on historical 
data.

• Factors affecting the choice of techniques used in the proposed 
system:system:

• R! programs do not have an identifiable pattern which can be 
studied to make predictions regarding future incoming job.

R! ft b l t th it ll i it• R! software belongs to the open source community, allowing its 
code to be freely available and is not bounded by confidentiality 
agreement .

Th R li ti i t f t ti ti l t ti d• The R application is a system for statistical computation and 
graphics, involving complex algorithms and computations.
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Handling ComplexityHandling Complexity

Our approach to handling complexity in programs is adapted from three 
general rules:general rules: 

1. lines of codes (LOC), 

2. distinct operators and operands as discussed by Halstead and

3. nesting depth as discussed by McCabe.

As most non-trivial programs predominantly consist of nested 
conditional statements or iterations, we focus on handling the 
complexity of nested loops to improve the prediction accuracy 

f th d lof the module.
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Sample Nested LoopsSample Nested Loops
for(k in 1:100) { #1

cat (“\n Loop k: ”, k);
for(i in 1:100) { #2for(i in 1:100) { #2

cat (“\n Loop i: ”, i);
for(j in 1:100) { #3

• As the level of nesting 
grow, the computational

cat (“\n Loop j: ”, j);
} #3
for(j in 1:100) { #4

grow, the computational 
step increases as well.

• The complexity increases 
h i d h

for(j in 1:100) { #4
cat (“\n Loop j: ”, j);

} #4
cat (“\n Loop i: ” i);

as the nesting depth 
increases. 

cat ( \n Loop i: , i);
} #2
cat (“\n Loop k: ”, k);
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Handling ComplexityHandling Complexity
1. Break down the nested loops into separate blocks identified by the 

start line and end line.

2. Compute the execution time, starting with the innermost loop, p , g p,
followed by its parent loop. Repeat until the outermost loop is 
reached.

3. One iteration of the parent loop includes the complete number of p p p
iterations of the child loop.

4. Represented by the following simplified equation:
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Where,,
N = total completion time

l = the time taken between the start of 
one loop and the successive loop

P(t ) = the amount of time needed to
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P(t1) = the amount of time needed to 
execute the innermost loop.



Implementation EnvironmentImplementation Environment

• The execution time of a program can often vary significantly from 
one execution to the next on the same system. This is becauseone execution to the next on the same system. This is because 
computers do not simply execute one program at a time. (dedicated 
environment)

• The execution time of one program varies more significantly when itThe execution time of one program varies more significantly when it 
is run across different platform. This is due to the different 
specifications of each machine that leads to wide variation in execution 
time. 

• Therefore, all tasks beginning with benchmarking operands and functions 
to getting the actual executing time are all done using the same machine.

• Similar to other historical-data based prediction, the proposed prediction p p p p
module is machine-dependent. However, the proposed architecture 
allows cross-platform prediction to be made with relative ease as only 
the benchmarked scripts need to be run on the different machines.
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Implementation EnvironmentImplementation Environment

• CPU: AMD Athlon 848 (2x2 Core)

• Operating System: CentOS 4.4

• CPU Speed: 3200 GHz

RAM 2048 MB• RAM 2048 MB

• Development of Prototype: Java, Eclipse version 3.2.2 as the IDE.

• Database: MySQL Server version 5.y Q

• The proposed prediction module run on a unix-based environment 
and is wrapped around an API implementation.

The API was developed using Java Server Page• The API was developed using Java Server Page.
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Testing and EvaluationTesting and Evaluation

Two main criteria were used when testing the prediction 
module:

1. Component / Functionality Test2. Accuracy of Prediction Test

• Throughout the phases, the prediction module was 
inserted with output statement to allow display of tokenized • Expected to provide an accuracy prediction of 80%, under 
version of the script.

• The output also allows display of complexity of nested loops
and conditional statements.

• All outputs is suppressed after the testing phase

a Normal Distribution. 
• In the Normal Distribution, 68% of the sampling lies within 
the first standard deviation. 

• All outputs is suppressed after the testing phase.
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Testing and EvaluationTesting and Evaluation

The mathematical formula to compute accuracy:

Accuracy Error = %100×
− actualestimated TTAccuracy Error = %100×
− actualestimated TT

Example:

Testimated : 100 days
T 110 d

actualT

Accuracy = 100% - Accuracy Error

actualT

Accuracy = 100% - Accuracy Error

Tactual : 110 days

Accuracy error = (110 – 100) / 110 * 100 =  9.09 % 

Acc rac = 100 9 09 = 90 91%

Where,

Accuracy = 100 – 9.09 = 90.91%

Hence, we can say that this is a successful estimation as the accuracy
of prediction is 90.91%, which is more than 80% (threshold goal).

Testimated : Time that was estimated by the prediction module
Tactual : Actual execution time Under Normal Distribution with one sigma of error, 

for a total sample of 100 test cases,
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the prediction module should be able to predict > 68 jobs with >80%.



Testing and EvaluationTesting and Evaluation

•At this phase, a total of 60 R! scripts were taken at random as the  
test casestest cases.

• The estimated time to run each of these 60 test cases was predicted 
using the wrapper developed.

• The predicted time was then compared with the actual execution time• The predicted time was then compared with the actual execution time 
for each job.

• Only predicted time that falls within the range of 80%-120% of the 
actual execution time is considered successful. 
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Summarized Result of Testing PhaseSummarized Result of Testing Phase
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ConclusionConclusion

• The test results meets the threshold goal of the project.

• Successful as a proof of concept though it is limited to predicting• Successful as a proof of concept, though it is limited to predicting 
the execution time of programs written using R! only.

• A solution to this problem will lead to improvement in advance 
h d li f ll ti ll h t th t itischeduling for resource allocation as well as hasten the transition 

of the research-driven grids to commercial grids. 

• There are still limitations and constraints that can be further 
refined in the later stage of the project.
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LimitationsLimitations

• Machine-dependent, platform specific. Benchmarked scripts will 
have to be run on each machine to obtain the benchmarked 
execution time.

• Does not cover programs written using the object-oriented 
programming language such as Java and data-feed orientedprogramming language such as Java and data feed oriented 
programs such as Blast.

• Dedicated environment. Assumed that jobs will not be pre-empted 
or interrupted by other jobsor interrupted by other jobs.

• At this phase, our work focus on programs written using R! 
software. However the architecture, methods and process applied are 

fl ibl h t b d t d d li d t th j b ittflexible enough to be adapted and applied to other jobs written 

in various imperative paradigm.
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Future Work Future Work -- In EGEE ContextIn EGEE Context

• The results will be used as a stepping-stone to investigate the
building of similar modules for applications being used by EGEE
users.

• To offer users a facility to predict execution time of jobs and toy p j
express this as a requirement when submitting their jobs to the
Grid.

•To assist the Workload Manager to efficiently distribute and
manage Grid resources for incoming jobs.
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Future WorkFuture Work

• The prediction module should be tested and evaluated for jobs other than 
R in the near future.

• To improve the efficiency of the prediction, this approach could be 
refined to handle while loops and dynamic number of iterations.

• Aside from that the benchmarking approach could be refined or extended• Aside from that, the benchmarking approach could be refined or extended 
further to increase the accuracy of prediction.

‘The computing field is always in need of new clichés’ 
-Alan Perlis-
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