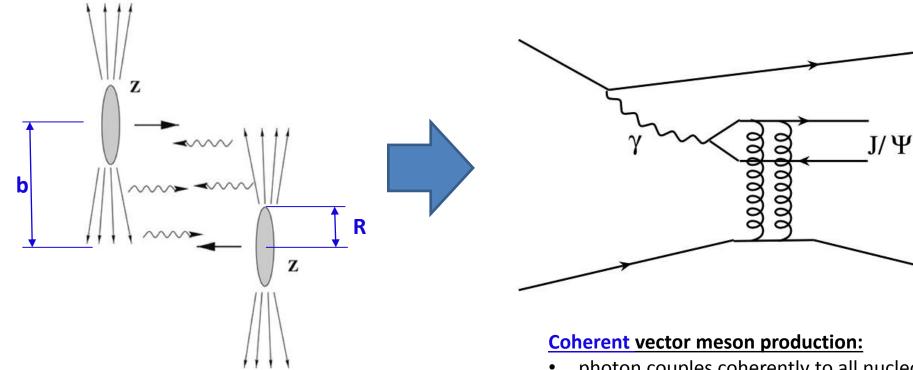
Workshop on results and prospects of forward physics at the LHC

Ultra-peripheral collisions with ALICE

Evgeny Kryshen on behalf of the ALICE collaboration

Petersburg Nuclear Physics Institute, Gatchina, Russia

12 February 2013


Contents

- Ultra-peripheral physics potential
- ALICE results on ultra-peripheral Pb-Pb collisions (UPC):
 - J/ψ at forward rapidity:
 Phys. Lett. B718 (2013) 1273
 - J/ψ at central rapidity
 - ρ^0 at central rapidity
- Prospects of pA UPC
- Summary

LHC as a yPb collider

- Ultra-peripheral (UPC) collisions: b > 2R \rightarrow hadronic interactions strongly suppressed
- High photon flux ~ Z²

\rightarrow well described in Weizsäcker-Williams approximation

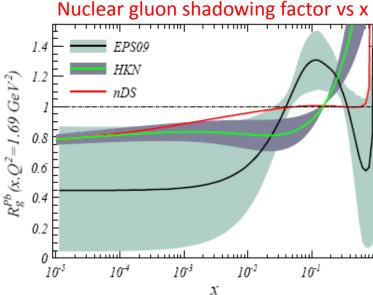
- \rightarrow high σ for γ -induced reactions
 - e.g. exclusive vector meson production

- photon couples coherently to all nucleons
- $\langle p_T \rangle \sim 1/R_{Ph} \sim 60 \text{ MeV/c}$
- no neutron emission in ~80% of cases

Incoherent vector meson production:

- photon couples to a single nucleon
- $\langle p_T \rangle \sim 1/R_p \sim 450 \text{ MeV/c}$
- target nucleus normally breaks up

Recent review on UPC physics: Phys. Rept. 458 (2008) 1-171


Why UPC in ALICE?

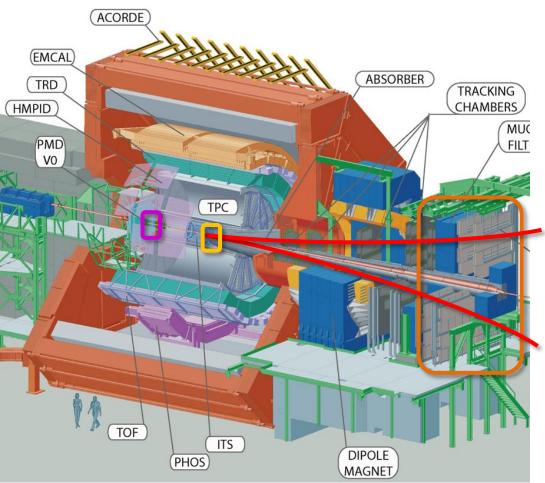
Why UPC?

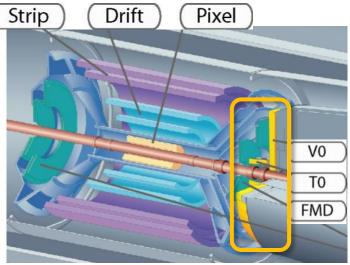
- Quarkonia photoproduction allows to study the gluon density $G(x; Q^2)$ in Pb
- LO pQCD: forward coherent photoproduction cross section is proportional to the squared gluon density:

$$\frac{d\sigma_{\gamma \rm Pb \to J/\psi \rm Pb}(t=0)}{dt} = \frac{16\,\Gamma_{ee}\pi^3}{3\alpha_{em}M_{J/\psi}^5} \Big[\alpha_s(Q^2)xG_{\rm Pb}(x,Q^2)\Big]^2$$
$$Q^2 \sim \frac{M_{J/\psi}^2}{4} \sim 2.5 \ {\rm GeV}^2$$

- Bjorken $x \sim 10^{-2} 10^{-5}$ accessible at LHC
- Quarkonium photoproduction in UPC is a direct tool to measure nuclear gluon shadowing!

Why ALICE?


- Large pseudorapidity coverage: -4.0 < η < 5.1 + ZDC calorimetry
- Trigger on J/ ψ with p_T down to 0 MeV/c both at forward and central rapidity
- Low pile-up


UPC J/ ψ at forward rapidity

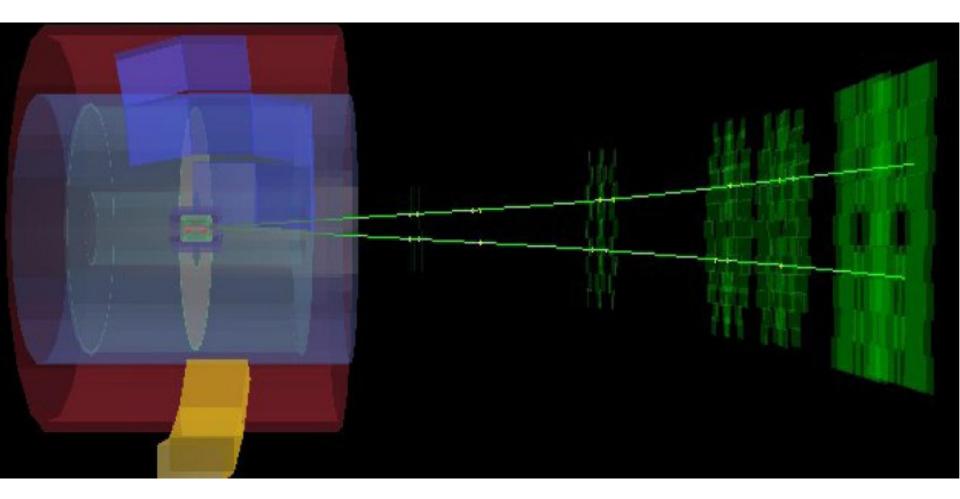
UPC forward trigger:

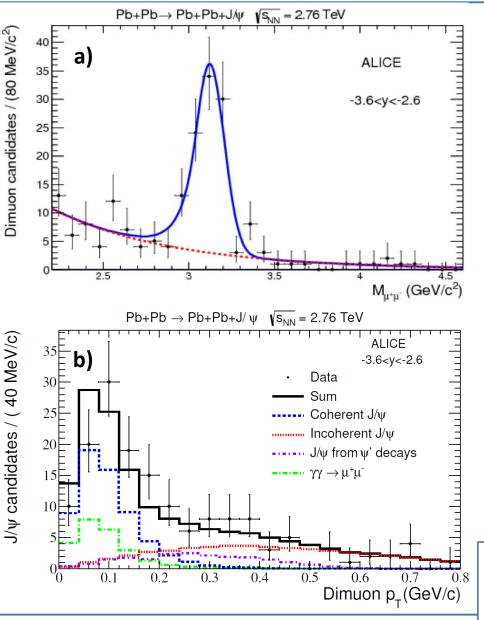
- single **muon trigger** with $p_T > 1$ GeV/c (-4 < η < -2.5)
- hit in **VZERO-C** (-3.7 < η < -1.7)
- no hits in VZERO-A (2.8 < η < 5.1)


Integrated luminosity ~ 55 µb⁻¹

Offline event selection:

- Beam gas rejection with VZERO
- Hadronic rejection with ZDC and SPD **Track selection:**
- muon tracks: -3.7 < η < -2.5
- matching with the trigger
- radial position for muons at the end of absorber: 17.5 < R_{abs}< 89.5 cm
- p_T dependent DCA cut
- opposite sign dimuon: -3.6 < y < -2.6


From typical hadronic PbPb collision...



... to exclusive J/ψ

Invariant mass and p_T distributions

Invariant mass distribution:

- p_T< 0.3 GeV/*c*
- Clean spectrum: only 2 like-sign events
- Signal shape fitted to a Crystal Ball shape
- Background fitted to an exponential
- Exponential shape compatible with expectations from $\gamma\gamma \rightarrow \mu\mu$ process

Four contributions in the p_T spectrum:

- Coherent J/ψ
- Incoherent J/ψ
- J/ψ from ψ' decays
- $\gamma\gamma \rightarrow \mu\mu$

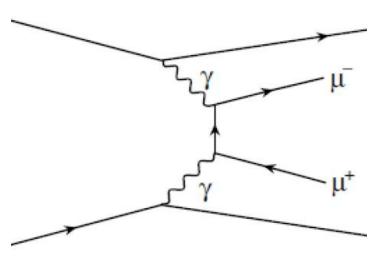
$$N_{\rm J/\psi}^{\rm coh} = \frac{N_{\rm yield}}{1 + f_I + f_D}$$

 $f_{I} = 0.12 + 0.14 - 0.04$ - fraction of incoherent J/ ψ in fig a.

 $f_{\rm D}$ = 0.11 \pm 0.06 - fraction of J/ ψ from ψ' decays in fig a.

 $N_{J/\psi}^{\rm coh} = 78 \pm 10(\text{stat})^{+7}_{-11}(\text{syst})$

Coherent J/ ψ cross section at forward rapidity


• QED continuum pair production used for normalization:

$$\frac{d\sigma_{\rm coh}}{dy} = \frac{1}{BR} \cdot \frac{N_{\rm coh}}{N_{\gamma\gamma}} \cdot \frac{({\rm Acc} \ge \epsilon)_{\gamma\gamma}}{({\rm Acc} \ge \epsilon)_{\rm coh}} \frac{\sigma_{\gamma\gamma}}{\Delta y}$$

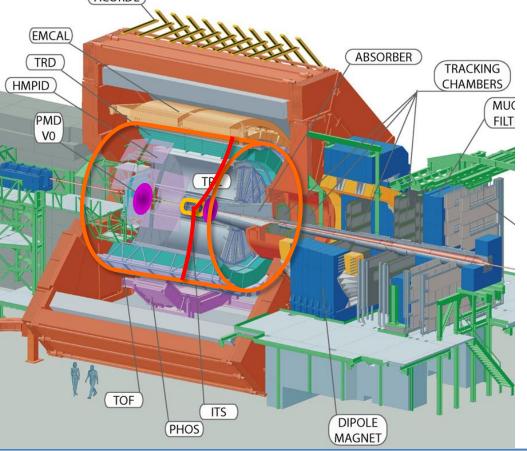
Standard QED ... but:

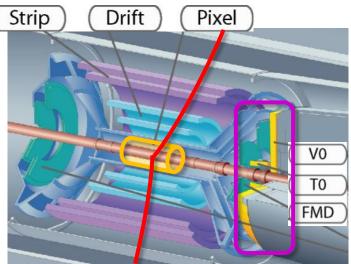
- Uncertainty in higher order terms due to coupling $Z\sqrt{\alpha}$
- Uncertainty on minimum momentum transfer and nuclear form factor
- Previous experimental results from RHIC also have large uncertainties and cannot constraint the theory
- 20% systematics

Source	Value
Theoretical uncertainty in $\sigma_{\gamma\gamma}$	20%
Coherent signal extraction	$^{+9}_{-14}\%$
Reconstruction efficiency	6%
RPC trigger efficiency	5%
${ m J}/\psi$ acceptance calculation	3%
two-photon e ⁺ e ⁻ background	2%
Branching ratio	1%
Total	$^{+24}_{-26}\%$

-3.6 < y < -2.6

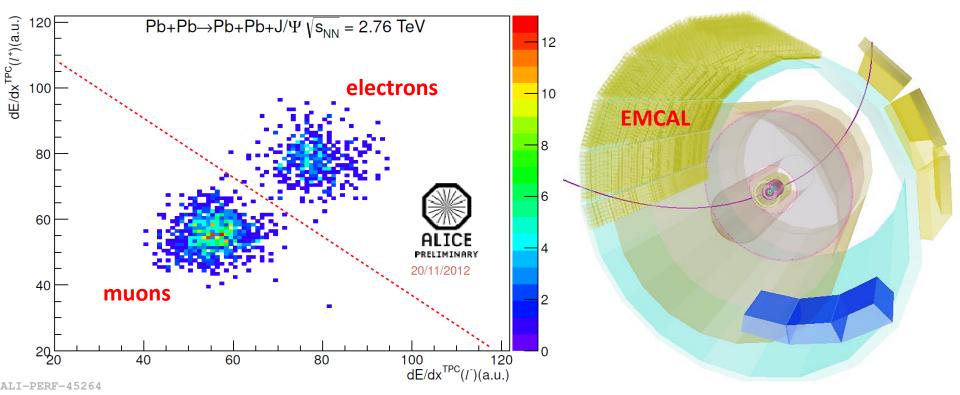
$${d\sigma_{
m coh}\over dy} = 1.00 \pm 0.18~{
m (stat)}~{+0.24 \ -0.26}~{
m (sys)}~{
m mb}$$


ALICE collaboration. Phys. Lett. B718 (2013) 1273


UPC J/ ψ at central rapidity

UPC central barrel trigger:

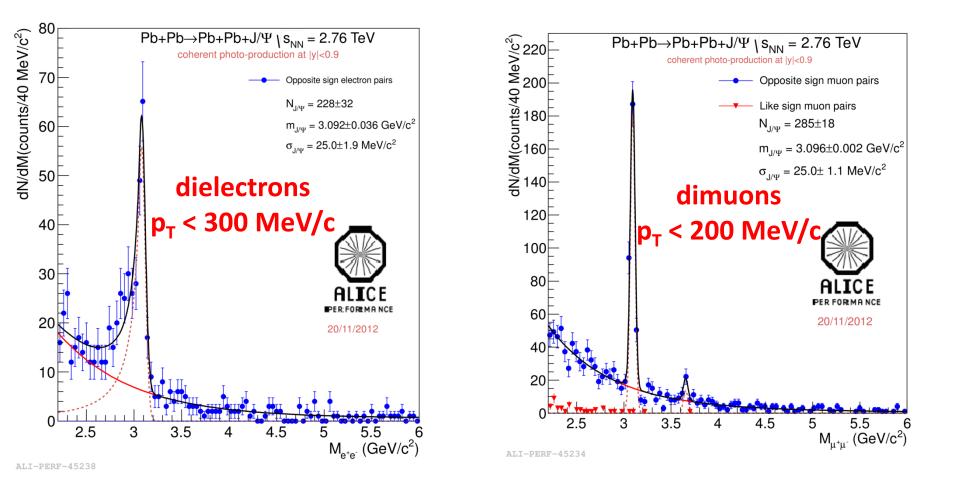
- $2 \le \text{TOF}$ hits $\le 6 (|\eta| < 0.9)$ + back-to-back topology ($150^\circ \le \phi \le 180^\circ$)
- ≥ 2 hits in SPD ($|\eta| < 1.5$)
- no hits in VZERO (C: -3.7 < η < -1.7, A: 2.8 < η < 5.1)
 (ACORDE)


Integrated luminosity ~ 20 µb⁻¹

Offline event selection:

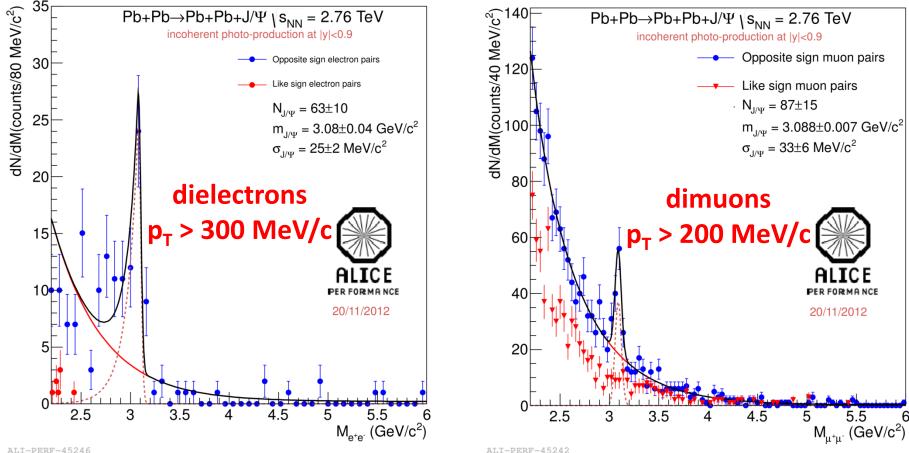
- Offline check on VZERO timing
- Hadronic rejection with ZDC **Track selection:**
- Two tracks: |η| < 0.9
- \geq 70 TPC clusters, \geq 1 SPD clusters
- p_T dependent DCA cut
- opposite sign dilepton
 |y| < 0.9, 2.2 < M_{inv} < 6 GeV/c²
- dE/dx in TPC compatible with e/ μ

dE/dx selection in TPC



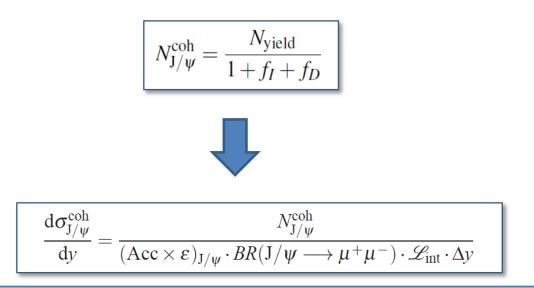
- dE/dx in TPC compatible with e/μ energy loss
- Cross-checked with E/p in EMCAL
- $\pm 2\%$ systematics due to e/μ separation

Coherent J/ψ

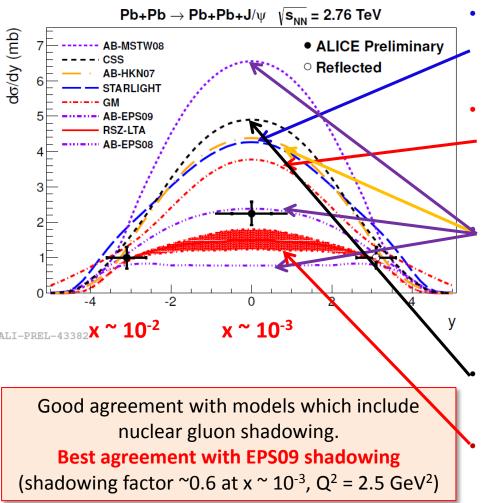

coherent enriched sample

Incoherent J/ψ

incoherent enriched sample


ALI-PERF-45246

p_T distributions


6 components in the dilepton p_T spectrum:

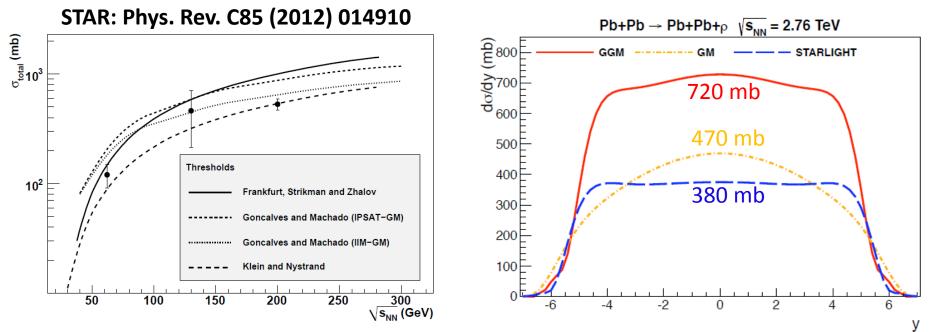
- coherent J/ψ
- incoherent J/ ψ : f₁
- feed-down from coherent and incoherent $\psi' {:}\; f_{_D}$
- continuum $\gamma\gamma \rightarrow ee(\mu\mu)$ from the fit to invariant mass
- hadronic J/ ψ events constrained for p_T> 1.1 GeV/c

Coherent J/ ψ : comparison to models

- **STARLIGHT: Klein, Nystrand, PRC60 (1999) 014903** VDM + Glauber approach where $J/\psi+p$ cross section is obtained from a parameterization of HERA data
- **GM:** Gonçalves, Machado, PRC84 (2011) 011902 color dipole model, where the scattering amplitude depends on the nuclear profile and the dipole nucleon cross section taken from the IIM saturation model

AB: Adeluyi and Bertulani, PRC85 (2012) 044904 LO pQCD calculations: AB-MSTW08 assumes no nuclear effects for the gluon distribution, other AB models incorporate gluon shadowing effects according to the EPS08, EPS09 or HKN07 parameterizations

CSS: Cisek, Szczurek, Schäfer, PRC86 (2012) 014905 Glauber approach accounting $c\bar{c}g$ intermediate states


RSZ: Rebyakova, Strikman, Zhalov, PLB 710 (2012) 252 LO pQCD calculations with nuclear gluon shadowing computed in the leading twist approximation

Lappi, Mäntysaari, hep-th/1301.4095 (postprediction, not shown yet): color dipole model + saturation

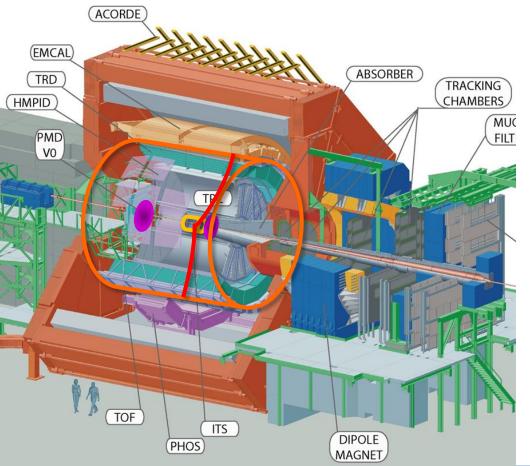
+ incoherent J/ ψ cross section and $\sigma(\gamma\gamma \rightarrow \mu\mu)$... will be published soon...

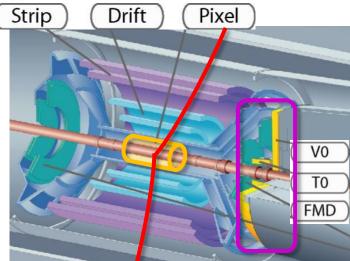
ρ⁰ photoproduction in PbPb

GGM: Frankfurt, Strikman, Zhalov, Phys. Lett. B 537 (2002) 51; Phys. Rev. C 67(2003) 034901

- Generalized Vector Meson Dominance Model in the Gribov-Glauber approach.
- Includes nondiagonal transitions $\gamma \to \rho' \to \rho$
- σ_{pN} from Donnachie-Landshoff model, in agreement with HERA and lower energy data.
 GM: Gonçalves, Machado, Phys. Rev. C 84 (2011) 011902
- Based on the color dipole model in combination with saturation from a CGC model.

STARLIGHT: Klein, Nystrand, Phys. Rev. C 60 (1999) 014903, http://starlight.hepforge.org/


- Uses experimental data on $\sigma_{\rho N}$ cross section.
- Glauber model neglecting the elastic part of total cross section.

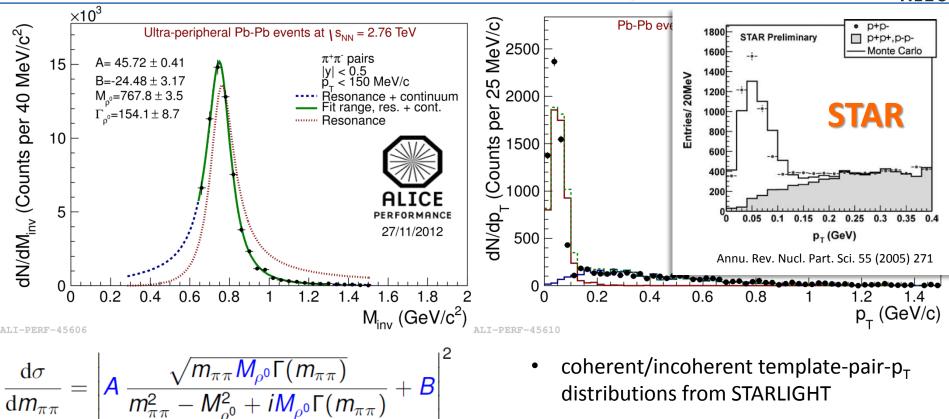

$\rho^0 \rightarrow \pi^+ \pi^-$ at central rapidity

UPC central barrel trigger:

- ≥ 2 hits in **TOF** ($|\eta| < 0.9$)
- ≥2 hits in SPD (|η| < 1.5)
- no hits in VZERO (C: -3.7 < η < -1.7, A: 2.8 < η < 5.1)

Integrated luminosity (2010 data) ~ 0.2 µb⁻¹

Offline event selection:


- Offline check on VZERO timing
- Hadronic rejection with ZDC

Track selection:

- Track quality cuts
- Vertex |v_z| < 10 cm
- opposite sign ππ pair:
 - |y| < 0.5
 - p_T < 150 MeV/c
- dE/dx in TPC compatible with π

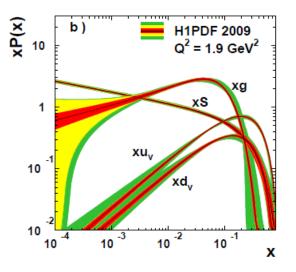
Invariant mass and p_T spectra

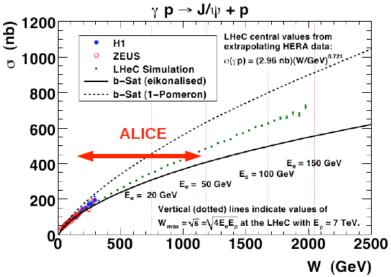
A - amplitude of the Breit-Wigner function B - amplitude of the non-resonant ππ production

$$\Gamma(m_{\pi\pi}) = \Gamma_{\rho^0} \frac{M_{\rho^0}}{m_{\pi\pi}} \left(\frac{m_{\pi\pi}^2 - 4m_{\pi}^2}{M_{\rho^0}^2 - 4m_{\pi}^2} \right)^{3/2}$$

- 7 % contribution from incoherent events with pair- $p_T < 150$ MeV/c
- p_T distribution in Starlight broader than in data (similar trend in STAR)

The absolute cross section will be released soon

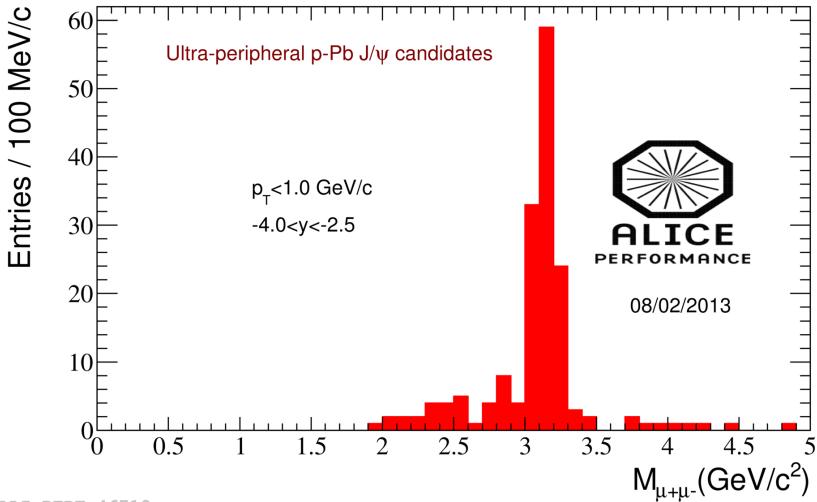

pA UPC potential



- High flux from Pb
- <u>Quarkonium photoproduction on p</u>
- Allows to study gluon PDFs in proton up to very small x (~10⁻⁵);

$$\frac{d\sigma_{\gamma p \to pJ/\psi}}{dt} = \frac{\Gamma_{ee} M_{J/\psi}^3 \pi^3}{48\alpha_{em}} \cdot \frac{\alpha_S^2(\bar{Q}^2)}{\bar{Q}^8} \left[xg_N(x, \bar{Q}^2) \right]^2 \exp[B_{J/\psi}(s)t]$$

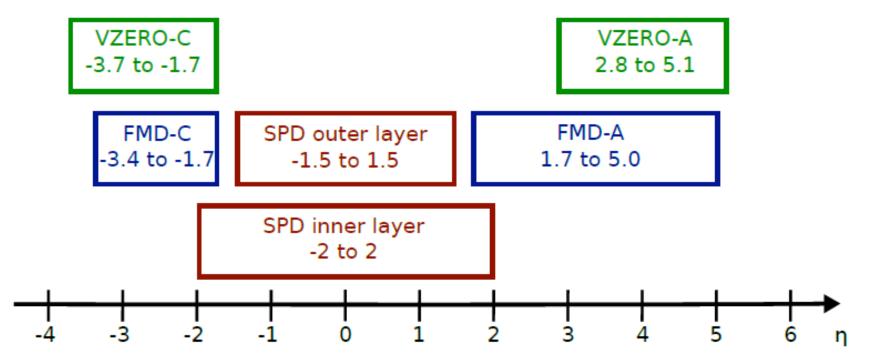
- Gluon PDF up to $x^{-10^{-4}}$ from J/ ψ photoproduction at HERA.
- UPC J/ ψ production measured in CDF at midrapidity (x~10⁻³)
- LHCb: exclusive J/ ψ in pp @ 7 TeV at forward rapidity (hep-ex/1301.7084). Sensitive to x ~ 10⁻⁵
- No two fold ambiguity: small contribution from J/ψ produced on Pb can be removed by p_T cut
- 3 options in ALICE:
 Forward: both muons in the muon arm
 Central: Both muons/electrons in the barrel
 Semi-forward: one muon in the muon arm,
 second in the barrel
- Wide x coverage with ALICE: 10⁻² -10⁻⁵



LheC Study Group, A Large Hadron Electron Collider at CERN, arxiv:1211.4831

pA appetizer

Conclusions and outlook


- The LHC is an effective γA (and γp) collider
- Quarkonium photoproduction in UPC is the most promising tool to measure gluon shadowing effects. Bjorken x up to 10⁻⁵ accessible
- ALICE measured J/ψ photoproduction in ultra-peripheral Pb-Pb collisions @ 2.76 TeV both at forward and central rapidities
 → Coherent cross section in good agreement with EPS09 parameterization
- $\rho^0 \rightarrow \pi^+\pi^-$ measured in PbPb UPC at central rapidity. Cross section will be released soon
- Measurement of J/ ψ photoproduction up to TeV scale in pA UPC is under way

Backup

ALICE pseudorapidity coverage

